Medical imaging has undergone remarkable changes in terms of technological innovations and market expansion. It has transformed from a simple visualization apparatus to an advanced analytics tool in a state-of-the-art system for disease diagnosis. In addition to its noninvasive nature, medical imaging modalities also dramatically reduce healthcare costs and help improve patient comfort.
You can use distributed high-performance computing (HPC) frameworks, such as Apache Spark, to accelerate the WSI preprocessing and to generate patches at scale by using multiple compute nodes. Multiple servers are processing data, so the question becomes: “What is the role of storage in such a high-data-demand case?” If data access needs are not met properly, it can easily become a bottleneck and compute nodes might starve for input data without being able to use resources to their maximum potential.
Working as an AI Solutions Architect – Data Scientist at NetApp, Muneer Ahmad Dedmari specialized in the development of Machine Learning and Deep learning solutions and AI pipeline optimization. After working on various ML/DL projects industry-wide, he decided to dedicate himself to solutions in different hybrid multi-cloud scenarios, in order to simplify the life of Data Scientists. He holds a Master’s Degree in Computer Science with specialization in AI and Computer Vision from Technical University of Munich, Germany.