Technical Report

NetApp and Iguazio for MLRun Pipeline
End-to-end Data Pipeline Integration and Experiment

Rick Huang, NetApp
Marcelo Litovsky, Iguazio
April 2020 | TR-4834-DESIGN

Abstract

This document covers the details of the MLRun pipeline using the NetApp® AI Control Plane, NetApp Cloud Volumes software, and the Iguazio Data Science Platform. We used the Nuclio serverless function, Kubernetes Persistent Volumes, NetApp Cloud Volumes, NetApp Snapshot™ copies, the Grafana dashboard, and other services on the Iguazio platform to build a end-to-end data pipeline for the simulation of network failure detection. We integrated Iguazio and NetApp technologies to enable fast model deployment, data replication, and production monitoring capabilities in the cloud.
TABLE OF CONTENTS

1 Introduction ... 4
 1.1 Target Audience .. 5
 1.2 Solution Overview ... 5

2 Technology Overview .. 5
 2.1 NetApp Overview ... 5
 2.2 NetApp AI Control Plane ... 6
 2.3 Iguazio Overview .. 7

3 Software and Hardware Requirements .. 8
 3.1 Network Configuration .. 8
 3.2 Hardware Requirement .. 8

4 Use Case ... 9

5 Setup .. 9
 5.1 Iguazio Installation ... 9
 5.2 Cloud Volume Definition .. 9
 5.3 Define Persistent Volume Claim ... 10
 5.4 Attach NetApp Volume to the Jupyter Notebook ... 11

6 Deploying the Application .. 11
 6.1 Get Code from GitHub ... 11
 6.2 Configure Working Environment ... 12
 6.3 Create Base Docker Images .. 13
 6.4 Review Individual Jupyter Notebooks ... 13
 6.5 Deploy Data Generation Function .. 14
 6.6 Pipeline Notebooks ... 15
 6.7 Review and Build Pipeline .. 16
 6.8 Deploy Grafana Dashboard .. 21
 6.9 Deploy Cleanup Function .. 23
 6.10 Benefits ... 23

7 Conclusion .. 23
LIST OF TABLES
Table 1) Software requirements. ...8
Table 2) Libraries and frameworks. ..13
Table 3) Jupyter Notebook functions. ...17
Table 4) Snapshot step definition details ..18
Table 5) Snapshot step definition details, part 2 ...18

LIST OF FIGURES
Figure 1) Model development in the AI/ML workflow.4
Figure 2) Solution overview. ..5
Figure 3) Kubernetes clusters ...6
Figure 4) Persistent volumes for Kubernetes ...7
Figure 5) Kubernetes Trident Persistent Volume demo7
Figure 6) The Iguazio Data Science Platform ..8
Figure 7) Prosvaio installation page ...9
Figure 8) Resource allocation, running user, and environment variable settings for persistent volume claims.11
Figure 9) Jupyter terminal ...12
Figure 10) Block diagram of completed MLRun pipeline14
Figure 11) Iguazio dashboard Pipeline tab ...19
Figure 12) Record of training accuracy ..19
Figure 13) Snapshot used to run experiment ...20
Figure 14) Metrics exploration ...20
Figure 15) Inputs, outputs, and artifacts for each run21
Figure 16) Additional job details ...21
1 Introduction

The work of a data scientist should be focused on the training and tuning of machine learning (ML) and artificial intelligence (AI) models. However, according to research by Google, data scientists spend ~80% of their time figuring out how to make their models work with enterprise applications and run at scale (Figure 1).

Figure 1) Model development in the AI/ML workflow.

Because Model Development is Just the First Step

To manage end-to-end AI/ML projects, a wider understanding of enterprise components is needed. Although DevOps has taken over the definition, integration, and deployment these types of components, machine learning operations target a similar flow that includes AI/ML projects. To get an idea of what an end-to-end AI/ML pipeline touches in the enterprise, see the following list of required components:

- Storage
- Networking
- Databases
- File systems
- Containers
- Continuous integration and continuous deployment (CI/CD) pipeline
- Development IDE
- Security
- Data access policies
- Hardware
- Cloud
- Virtualization
- Data science toolsets and libraries
In this paper, we demonstrate how the partnership between NetApp and Iguazio drastically simplifies the development of an end-to-end AI/ML pipeline. This simplification accelerates the time to market for all of your AI/ML applications.

1.1 Target Audience

The world of data science touches multiple disciplines in information technology and business.

- The data scientist needs the flexibility to use their tools and libraries of choice.
- The data engineer needs to know how the data flows and where it resides.
- A DevOps engineer needs the tools to integrate new AI/ML applications into their CI/CD pipelines.
- Business users want to have access to AI/ML applications.

We highlight how NetApp and Iguazio help each of these roles bring value to business with our platforms.

1.2 Solution Overview

This solution follows the life cycle of an AI/ML application. We start with the work of data scientists to define the different steps needed to prep data and train and deploy models. We follow with the work needed to create a full pipeline with the ability to track artifacts, experiment with execution, and deploy to Kubeflow. To complete the full cycle, we integrate the pipeline with NetApp Cloud Volumes to enable data versioning (Figure 2).

Figure 2) Solution overview.

2 Technology Overview

2.1 NetApp Overview

NetApp is the data authority for the hybrid cloud. NetApp provides a full range of hybrid cloud data services that simplify management of applications and data across cloud and on-premises environments.
to accelerate digital transformation. Together with our partners, NetApp empowers global organizations to unleash the full potential of their data to expand customer touch-points, foster greater innovation, and optimize their operations.

2.2 NetApp AI Control Plane

The NetApp AI Control Plane enables you to unleash AI and ML with a solution that offers extreme scalability, streamlined deployment, and nonstop data availability. The AI Control Plane solution integrates Kubernetes and Kubeflow with a data fabric enabled by NetApp. Kubernetes, the industry-standard container orchestration platform for cloud-native deployments, enables workload scalability and portability. Kubeflow is an open-source machine-learning platform that simplifies management and deployment, enabling developers to do more data science in less time. A data fabric enabled by NetApp offers uncompromising data availability and portability to make sure that your data is accessible across the pipeline, from edge to core to cloud. This technical report uses the NetApp AI Control Plane in an MLRun pipeline (Figure 3, Figure 4, and Figure 5).

Figure 3) Kubernetes clusters.
2.3 Iguazio Overview

The Iguazio Data Science Platform is a fully integrated and secure data-science platform as a service (PaaS) that simplifies development, accelerates performance, facilitates collaboration, and addresses operational challenges. This platform incorporates the following components (Figure 6):

- A data-science workbench that includes Jupyter Notebooks, integrated analytics engines, and Python packages
- Model management with experiments tracking and automated pipeline capabilities
- Managed data and ML services over a scalable Kubernetes cluster
- Nuclio, a real-time serverless functions framework
- An extremely fast and secure data layer that supports SQL, NoSQL, time-series databases, files (simple objects), and streaming
- Integration with third-party data sources such as NetApp, Amazon S3, HDFS, SQL databases, and streaming or messaging protocols
- Real-time dashboards based on Grafana

Figure 6) The Iguazio Data Science Platform.

3 Software and Hardware Requirements

3.1 Network Configuration
- The Iguazio cluster and NetApp Cloud Volumes must be in the same virtual private cloud.
- The cloud manager must have access to port 6443 on the Iguazio app nodes.
- We used Amazon Web Services in this technical report. However, users have the option of deploying the solution in any Cloud provider.

3.2 Hardware Requirement
You can install Iguazio on-premise in your own cluster. We are verifying the solution in NetApp ONTAP AI with an NVIDIA DGX-1 system. We will update this technical report with on-premise settings and testing results later.

This solution was fully tested with Iguazio version 2.5 and NetApp Cloud Volumes ONTAP for AWS. The Iguazio cluster and NetApp software are both running on AWS (Table 1).

Table 1) Software requirements.

<table>
<thead>
<tr>
<th>Software</th>
<th>Version or Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iguazio</td>
<td>Version 2.8+</td>
</tr>
<tr>
<td>App node</td>
<td>M5.4xlarge</td>
</tr>
</tbody>
</table>
4 Use Case

This use case is based on an Iguazio customer in the telecommunications space in Asia. With 100K enterprise customers and 125k network outage events per year, there was a critical need to predict and take proactive action to prevent network failures from affecting customers. This solution provided them with the following benefits:

- Predictive analytics for network failures
- Integration with a ticketing system
- Taking proactive action to prevent network failures

As a result of this implementation of Iguazio, 60% of failures were proactively prevented.

5 Setup

5.1 Iguazio Installation

Iguazio can be installed on-premise or on a cloud provider. Provisioning can be done as a service and managed by Iguazio or by the customer. In both cases, Iguazio provides a deployment application (Provazio) to deploy and manage clusters (Figure 7).

5.2 Cloud Volume Definition

Through NetApp Cloud Manager, you can define the connection to the Iguazio Kubernetes cluster. Trident requires access to multiple resources in the cluster to make the volume available.
1. To enable access, obtain the Kubernetes config file from one the Iguazio nodes. The file is located under /home/Iguazio/.kube/config. Download this file to your desktop.

2. Go to Discover Cluster to configure.

4 Kubernetes Clusters

<table>
<thead>
<tr>
<th>Kubernetes Clusters</th>
</tr>
</thead>
<tbody>
<tr>
<td>kubernetes</td>
</tr>
<tr>
<td>Https://10.111.205:443</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kubernetes Clusters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kubernetes</td>
</tr>
<tr>
<td>Https://127.31.4:8443</td>
</tr>
</tbody>
</table>

3. Upload the Kubernetes config file.

4. Deploy Trident and associate a volume with the cluster.
 This process creates a persistent volume (PV) in Iguazio’s Kubernetes cluster. Before you can use it, you must define a persistent volume claim (PVC).

5.3 Define Persistent Volume Claim

1. Save the following YAML to a file to create a PVC of type Basic.
2. Apply the YAML file to your Iguazio Kubernetes cluster.

```bash
kubectl -n default-tenant apply -f <your yaml file>
```

5.4 Attach NetApp Volume to the Jupyter Notebook

Iguazio offers several managed services to provide data scientists with a full end-to-end stack for development and deployment of AI/ML applications. You can read more about these components at the [Iguazio Overview of Application Services and Tools](#).

One of the managed services is Jupyter Notebook. Each developer gets its own deployment of a notebook container with the resources they need for development. To give them access to the NetApp Cloud Volume, you can assign the volume to their container (Figure 8).

Figure 8) Resource allocation, running user, and environment variable settings for persistent volume claims.

6 Deploying the Application

6.1 Get Code from GitHub

Now that the NetApp Cloud Volume is available to the Iguazio cluster and the developer’s environment, you can start reviewing the application.

Note: Each user has their own workspace (directory). On every notebook, the path to the user directory is `/User`. This directory is managed by the Iguazio platform. If you follow the instructions above, The NetApp Cloud volume is available in the `/netapp` directory.

Get the code from Github using a Jupyter terminal (Figure 9).
At the Jupyter terminal prompt, clone the project.

```
cd /User
```

You should now see the netops-netapp folder on the file tree Jupyter.

6.2 Configure Working Environment

Copy the Notebook `set_env-Example.ipynb` as `set_env.ipynb`. Open and edit `set_env.ipynb`. This notebook sets variables for credentials, file locations, and execution drivers.

If you follow the instructions above, these are the only changes to make:

- **docker_registry**

 Obtain this value from the Iguazio services dashboard.

 Example: `docker-registry.default-tenant.app.clusterq.iguaziodev.com:80`

- **IGZ_CONTAINER_PATH** = '/users/admin'

 Change from admin to your Iguazio user name.

These are the Cloud Manager connection details. Include the volume name that was generated when Trident was installed. The following setting is for on-premise ONTAP cluster:

```
tonapClusterMgmtHostname = '0.0.0.0'
tonapClusterAdminUsername = 'USER'
tonapClusterAdminPassword = 'PASSWORD'
sourceVolumeName = 'SOURCE VOLUME'
```

The following setting is for Cloud Volumes ONTAP:

```
MANAGER=tonapClusterMgmtHostname
svm='svm'
email='email'
password=tonapClusterAdminPassword
weid="weid"
```
6.3 Create Base Docker Images

Everything you need to build an ML pipeline is included in the Iguazio platform. The developer can define the specifications of the Docker images needed to run the pipeline and execute the image creation from Jupyter Notebook. Open the notebook `create-images.ipynb` and Run All Cells.

This notebook creates two images that we use in the pipeline.

- **iguazio/netapp.** Used to handle ML tasks.
  ```python
  # Create image for training pipeline
  f = build_config(image='iguazio/netapp', commands=['pip install \v3io_framesspec>=0.3.3 PyYAML>=5.1.2 pyarrow>=0.15.1 pandas>=0.25.3 matplotlib seaborn yellow
  %run deploy()
  ```

- **netapp/pipeline.** Contains utilities to handle NetApp Snapshot copies.
  ```python
  # Create image for Ontap utilities
  f = build_config(image='netapp/pipeline:latest', commands=['apt -y update', 'pip install v3io_framessnapetap'])
  fn.deplay()
  ```

6.4 Review Individual Jupyter Notebooks

Table 2 lists the libraries and frameworks we used to build this task. All these components have been fully integrated with Iguazio’s role-based access and security controls.

Table 2) Libraries and frameworks.

<table>
<thead>
<tr>
<th>Libraries/Framework</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MLRun</td>
<td>An open source project managed by Iguazio to enable the assembly, execution, and monitoring of an ML/AI pipeline.</td>
</tr>
<tr>
<td>Nuclio</td>
<td>A serverless functions framework integrated with Iguazio. Also available as an open-source project managed by Iguazio.</td>
</tr>
<tr>
<td>Kubeflow</td>
<td>A Kubernetes-based framework to deploy the pipeline. This is also an open-source project to which Iguazio contributes. It is integrated with Iguazio for added security and integration with the rest of the infrastructure.</td>
</tr>
<tr>
<td>Docker</td>
<td>A Docker registry run as a service in the Iguazio platform. You can also change this to connect to your registry.</td>
</tr>
<tr>
<td>NetApp Cloud Volumes</td>
<td>Cloud Volumes running on AWS give us access to large amounts of data and the ability to take Snapshot copies to version the data sets used for training.</td>
</tr>
<tr>
<td>Trident</td>
<td>Trident is an open-source project managed by NetApp. It facilitates the integration with storage and compute resources in Kubernetes.</td>
</tr>
</tbody>
</table>

We used several notebooks to construct the ML pipeline. Each notebook can be tested individually before being brought together in the pipeline. We cover each notebook individually following the deployment flow of this demo application.

The desired result is a pipeline that trains a model based on a snapshot of the data and deploys the model for inference (Figure 10).
6.5 Deploy Data Generation Function

This section describes how we used Nuclio serverless functions to generate network device data. The use case is adapted from an Iguazio client that deployed the pipeline and used Iguazio services to monitor and predict network device failures.

We simulated data coming from network devices. Executing the Jupyter notebook `data-generator.ipynb` creates a serverless function that runs every 10 min and generates a Parquet file with new data. Run all cells in this notebook to deploy the function. See the Nuclio [website](#) to review any unfamiliar components in this notebook.

A cell with the following comment is ignored when generating the function. Every cell in the notebook is assumed to be part of the function. Import the Nuclio module to enable `%nuclio magic`.

```python
# nuclio: ignore
import nuclio
```

In the spec for the function, we defined the environment in which the function executes, how it is triggered, and the resources it consumes.

```python
spec = nuclio.ConfigSpec(config={"spec.triggers.inference.kind":"cron", "spec.triggers.inference.attributes.interval":"10m", "spec.readinessTimeoutSeconds" : 60, "spec.minReplicas" : 1},......)
```

The `init_context` function is invoked by the Nuclio framework upon initialization of the function.

```python
def init_context(context):
    ...
```

Any code not in a function is invoked when the function initializes. When you invoke it, a handler function is executed. You can change the name of the handler and specify it in the function spec.

```python
def handler(context, event):
    ...
```

You can test the function from the notebook prior to deployment.

```python
%%time
# nuclio: ignore
```
```python
init_context(context)
event = nuclio.Event(body='')
output = handler(context, event)
output
```

The function can be deployed from the notebook, or it can be deployed from a CI/CD pipeline (adapting this code).

```python
addr = nuclio.deploy_file(name='generator', project='netops', spec=spec, tag='v1.1')
```

6.6 Pipeline Notebooks

These notebooks are not meant to be executed individually for this setup. This is just a review of each notebook. We invoked them as part of the pipeline. To execute them individually, review the MLRun documentation to execute them as Kubenetes jobs.

snap_cv.ipynb

This notebook handles the Cloud Volume Snapshot copies at the beginning of the pipeline. It passes the name of the volume to the pipeline context. This notebook invokes a shell script to handle the Snapshot copy. While running in the pipeline, the execution context contains variables to help locate all files needed for execution. While writing this code, the developer does not have to worry about the file location in the container that executes it. As you will see later, this application is deployed with all its dependencies, and it is the definition of the pipeline parameters that provides the execution context.

```python
command = os.path.join(context.get_param('APP_DIR'),"snap_cv.sh")
```

The created snapshot location is placed in the MLRun context to be consumed by steps in the pipeline.

```
context.log_result('snapVolumeDetails',snap_path)
```

The next three notebooks are executed in parallel.

data-prep.ipynb

Raw metrics must be turned into features to enable model training. This notebook reads the raw metrics from the snapshot directory and writes the features for model training to the NetApp volume. When running in the context of the pipeline, the input `DATA_DIR` contains the snapshot location.

```python
metrics_table = os.path.join(str(mlruncontext.get_input('DATA_DIR', os.getenv('DATA_DIR','/netpp'))),
mlruncontext.get_param('metrics_table', os.getenv('metrics_table','netops_metrics_parquet')))
```

describe.ipynb

To visualize the incoming metrics, we deploy a pipeline step that provides plots and graphs that are available through the Kubeflow and MLRun UIs. Each execution has its own version of this visualization tool.

```python
ax.set_title("features correlation")
plt.savefig(os.path.join(base_path, "plots/corr.png"))
context.log_artifact(PlotArtifact("correlation", body=plt.gcf()), local_path="plots/corr.html")
```

deploy-feature-function.ipynb

We continuously monitor the metrics looking for anomalies. This notebook creates a serverless function that generates the features need to run prediction on incoming metrics. This notebook invokes the
creation of the function. The function code is in the notebook `data-prep.ipynb`. Notice that we use the same notebook as a step in the pipeline for this purpose.

training.ipynb

After we create the features, we trigger the model training. The output of this step is the model to be used for inferencing. We also collect statistics to keep track of each execution (experiment).

For example, the following command enters the accuracy score into the context for that experiment. This value is visible in Kubeflow and MLRun.

```
context.log_result('accuracy', score)
```

deploy-inference-function.ipynb

The last step in the pipeline is to deploy the model as a serverless function for continuous inferencing. This notebook invokes the creation of the serverless function defined in `nuclio-inference-function.ipynb`.

6.7 Review and Build Pipeline

The combination of running all the notebooks in a pipeline enables the continuous run of experiments to reassess the accuracy of the model against new metrics. First open the `pipeline.ipynb` notebook. We take you through details that show how NetApp and Iguazio simplify the deployment of this ML pipeline.

We use MLRun to provide context and handle resource allocation to each step of the pipeline. The MLRun API service runs in the Iguazio platform and is the point of interaction with Kubernetes resources. Each developer on their own cannot directly request resources; the API handles the requests and enables access controls.

```python
# MLRun API connection definition
mlconf.dbpath = 'http://mlrun-api:8080'
```

The pipeline can work with NetApp Cloud Volumes as well as on-premise volumes. We built this demo to use Cloud Volumes, but you can see in the code the option to run on-premise.

```python
# Initialize the NetApp snap function once for all functions in a notebook
if [ NETAPP_CLOUD_VOLUME ]:
    snapfn =
    code_to_function('snap',project='NetApp',kind='job',filename="snap_cv.ipynb").apply(mount_v3io())
    snap_params = {
        "metrics_table": metrics_table,
        "NETAPP_MOUNT_PATH": NETAPP_MOUNT_PATH,
        'MANAGER': MANAGER,
        'svm': svm,
        'email': email,
        'password': password,
        'weid': weid,
        'volume': volume,
        "APP_DIR": APP_DIR
    }
else:
    snapfn =
    code_to_function('snap',project='NetApp',kind='job',filename="snapshot.ipynb").apply(mount_v3io())
...
```

The first action needed to turn a Jupyter notebook into a Kubeflow step is to turn the code into a function. A function has all the specifications required to run that notebook. As you scroll down the notebook, you can see that we define a function for every step in the pipeline (Table 3).
Table 3) Jupyter Notebook functions.

<table>
<thead>
<tr>
<th>Function (part of the MLRun module)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>code_to_function Name of the function: Project name. used to organize all project artifacts. This is visible in the MLRun UI. Kind. In this case, a Kubernetes job. This could be Dask, mpi, sparkk8s, and more. Please review the MLRun documentation for more details. File. The name of the notebook. This can also be a location in Git (HTTP).</td>
<td></td>
</tr>
<tr>
<td>image</td>
<td>The name of the Docker image we are using for this step. We created this earlier with the create-image.ipynb notebook.</td>
</tr>
<tr>
<td>volume_mounts & volumes</td>
<td>Details to mount the NetApp Cloud Volume at runtime.</td>
</tr>
</tbody>
</table>

We also define parameters for the steps.

```python
```

After you have the function definition for all steps, you can construct the pipeline. We use the kfp module to make this definition. The difference between using MLRun and building on your own is in the simplification and shortening of the coding.

The functions we defined are turned into step components using the `as_step` function of MLRun.

Snapshot step definition

```python
snap = snapfn.as_step(NewTask(handler='handler',params=snap_params), name='NetApp_Cloud_Volume_Snapshot',outputs=['snapVolumeDetails','training_parquet_file']).apply(mount_v3io())
```
Table 4) Snapshot step definition details.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>NewTask</td>
<td>NewTask is the definition of the function run.</td>
</tr>
<tr>
<td>(MLRun module)</td>
<td>Handler. Name of the Python function to invoke. We used the name</td>
</tr>
<tr>
<td></td>
<td>handler in the notebook, but it is not required.</td>
</tr>
<tr>
<td></td>
<td>params. The parameters we passed to the execution. Inside our code,</td>
</tr>
<tr>
<td></td>
<td>we use context.get_param('PARAMETER') to get the values.</td>
</tr>
<tr>
<td>as_step</td>
<td>Name. Name of the Kubeflow pipeline step.</td>
</tr>
<tr>
<td></td>
<td>outputs. These are the values that the step adds to the dictionary</td>
</tr>
<tr>
<td></td>
<td>upon completion. Take a look at the snap_cv.ipynb notebook.</td>
</tr>
<tr>
<td></td>
<td>mount_v3io(). This configures the step to mount /User for the user</td>
</tr>
<tr>
<td></td>
<td>executing the pipeline.</td>
</tr>
</tbody>
</table>

```python
prep = data_prep.as_step(name='data-prep', handler='handler',params=params,
                         inputs = {'DATA_DIR': snap.outputs['snapVolumeDetails']},
                         out_path=artifacts_path).apply(mount_v3io()).after(snap)
```

Table 5) Snapshot step definition details, part 2.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>inputs</td>
<td>You can pass to a step the outputs of a previous step. In this case, snap.outputs['snapVolumeDetails'] is the name of the snapshot we created on the snap step.</td>
</tr>
<tr>
<td>out_path</td>
<td>A location to place artifacts generating using the MLRun module log_artifacts.</td>
</tr>
</tbody>
</table>

You can run pipeline.ipynb from top to bottom. You can then go to the Pipelines tab from the Iguazio dashboard to monitor progress (Figure 11).
Because we logged the accuracy of training step in every run, we have a record of accuracy for each experiment (Figure 12).

If you select the Snapshot step, you can see the name of the snapshot that was used to run this experiment (Figure 13).
Figure 13) Snapshot used to run experiment.

The described step has visual artifacts to explore the metrics we used. You can expand to view the full plot (Figure 14).

Figure 14) Metrics exploration.

The MLRun API database also keeps track of inputs, outputs, and artifacts for each run organized by project (Figure 15).
For each job, we store additional details (Figure 16).

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>deploy-model</td>
<td>24 Mar, 14:56:03</td>
</tr>
<tr>
<td>xgb_train</td>
<td>24 Mar, 14:53:18</td>
</tr>
<tr>
<td>data-prep</td>
<td>24 Mar, 14:52:46</td>
</tr>
<tr>
<td>describe</td>
<td>24 Mar, 14:52:45</td>
</tr>
<tr>
<td>deploy-features-function</td>
<td>24 Mar, 14:52:43</td>
</tr>
<tr>
<td>NetApp_Cloud_Volume_Snap</td>
<td>24 Mar, 14:51:22</td>
</tr>
</tbody>
</table>

There is more about MLRun than we can cover in this document. AI artifacts, including the definition of the steps and functions, can be saved to the API database, versioned, and invoked individually or as a full project. Projects can also be saved and pushed to Git for later use. We encourage you to learn more at the [MLRun GitHub site](https://github.com/mlrun).

6.8 Deploy Grafana Dashboard

After everything is deployed, we run inferences on new data. The models predict failure on network device equipment. The results of the prediction are stored in an Iguazio TimeSeries table. You can visualize the results with Grafana in the platform integrated with Iguazio’s security and data access policy.

You can deploy the dashboard by importing the provided JSON file into the Grafana interfaces in the cluster.

1. First, to verify that the Grafana service is running, look under Services.
2. If it is not present, deploy an instance from the Services section:
 a. Click New Service.
 b. Select Grafana from the dropdown.
 c. Accept the defaults.
 d. Click Next Step.
 e. Enter your user-id.
 f. Click Save Service.
 g. Click Apply Changes at the top.
3. To deploy the dashboard, download the file NetopsPredictions-Dashboard.json through the Jupyter interface.
4. Open Grafana from the Services section and import the dashboard.
5. Click Upload *.json File and select the file that you downloaded earlier (NetopsPredictions-Dashboard.json). The dashboard displays after the upload is completed.

6.9 Deploy Cleanup Function

When you generate a lot of data, it is important to keep things clean and organized. To do so, deploy the cleanup function with the cleanup.ipynb notebook.

6.10 Benefits

NetApp and Iguazio speed up and simplify the deployment of AI and ML applications by building in essential frameworks, such as Kubeflow, Apache Spark, and TensorFlow, along with orchestration tools like Docker and Kubernetes. By unifying the end-to-end data pipeline, NetApp and Iguazio reduce the latency and complexity inherent in many advanced computing workloads, effectively bridging the gap between development and operations. Data scientists can run queries on large datasets and securely share data and algorithmic models with authorized users during the training phase. After the containerized models are ready for production, you can easily move them from development environments to operational environments.

7 Conclusion

When building your own AI/ML pipelines, configuring the integration, management, security, and accessibility of the components in an architecture is a challenging task. Giving developers access and control of their environment presents another set of challenges.

The combination of NetApp and Iguazio brings these technologies together as managed services to accelerate technology adoption improve the time to market for new AI/ML applications.

Where to Find Additional Information

To learn more about the information that is described in this document, see the following resources:

- NetApp AI Control Plane:
- NetApp AI Control Plane Technical Report
- NetApp persistent storage for containers:
 - NetApp Trident
 https://netapp.io/persistent-storage-provisioner-for-kubernetes/
- ML framework and tools:
 https://www.tensorflow.org/
 - Docker
 https://docs.docker.com
 - Kubernetes
 https://kubernetes.io/docs/
 - Kubeflow
 http://www.kubeflow.org/
 - Jupyter Notebook Server
 http://www.jupyter.org/
- Iguazio Data Science Platform
 - Iguazio Data Science Platform Documentation
 https://www.iguazio.com/docs/
 - Nuclio serverless function
 https://nuclio.io/
 - MLRun opensource pipeline orchestration framework
 https://www.iguazio.com/open-source/mlrun/

Version History

<table>
<thead>
<tr>
<th>Version</th>
<th>Date</th>
<th>Document Version History</th>
</tr>
</thead>
<tbody>
<tr>
<td>Version 1.0</td>
<td>April 2020</td>
<td>Initial release</td>
</tr>
</tbody>
</table>
Refer to the Interoperability Matrix Tool (IMT) on the NetApp Support site to validate that the exact product and feature versions described in this document are supported for your specific environment. The NetApp IMT defines the product components and versions that can be used to construct configurations that are supported by NetApp. Specific results depend on each customer’s installation in accordance with published specifications.

Copyright Information

Copyright © 2020 NetApp, Inc. All Rights Reserved. Printed in the U.S. No part of this document covered by copyright may be reproduced in any form or by any means—graphic, electronic, or mechanical, including photocopying, recording, taping, or storage in an electronic retrieval system—without prior written permission of the copyright owner.

Software derived from copyrighted NetApp material is subject to the following license and disclaimer:

THIS SOFTWARE IS PROVIDED BY NETAPP “AS IS” AND WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL NETAPP BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

NetApp reserves the right to change any products described herein at any time, and without notice. NetApp assumes no responsibility or liability arising from the use of products described herein, except as expressly agreed to in writing by NetApp. The use or purchase of this product does not convey a license under any patent rights, trademark rights, or any other intellectual property rights of NetApp.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or pending applications.

Data contained herein pertains to a commercial item (as defined in FAR 2.101) and is proprietary to NetApp, Inc. The U.S. Government has a non-exclusive, non-transferrable, non-sublicensable, worldwide, limited irrevocable license to use the Data only in connection with and in support of the U.S. Government contract under which the Data was delivered. Except as provided herein, the Data may not be used, disclosed, reproduced, modified, performed, or displayed without the prior written approval of NetApp, Inc. United States Government license rights for the Department of Defense are limited to those rights identified in DFARS clause 252.227-7015(b).

Trademark Information

NETAPP, the NETAPP logo, and the marks listed at http://www.netapp.com/TM are trademarks of NetApp, Inc. Other company and product names may be trademarks of their respective owners.