Abstract
The NetApp® EF600 NVMe (NVM Express) all-flash array delivers optimal performance without compromising on the reliability, availability, and serviceability (RAS) features that deliver up to 99.9999% availability. This document provides detailed information about the hardware and software features of the EF600 all-flash array as well as new SANtricity features. The latest release of SANtricity includes the addition of a new 200Gb host interface. This new host interface card (HIC) supports NVMe over RDMA over Converged Ethernet (NVMe/RoCE), NVMe over InfiniBand (NVMe/IB), SCSI RDMA Protocol over IB (SRP/IB) and iSCSI extensions for RDMA over IB (iSER/IB). The 100Gb host interface card has been updated to include support for the SRP/IB and iSER/IB protocols as well. The embedded, browser-based NetApp SANtricity® System Manager provides enhanced security for array management, and NetApp SANtricity Unified Manager simplifies managing multiple systems.
# TABLE OF CONTENTS

1 **Introduction** .................................................................................................................. 5

2 **Key Differences Between EF600 and Previous-Generation EF-Series Arrays** .............. 8
   2.1 End-to-End NVMe ........................................................................................................... 8
   2.2 Advanced Format (4KB Block Format) ............................................................................. 9
   2.3 OS Support ....................................................................................................................... 9
   2.4 Endurance and Performance Optimization .................................................................... 9

3 **SANtricity Management Features** ................................................................................. 14
   3.1 Deployment .................................................................................................................... 14
   3.2 SANtricity Unified Manager .......................................................................................... 17
   3.3 SANtricity Unified Manager Navigation ....................................................................... 19
   3.4 SANtricity System Manager .......................................................................................... 26
   3.5 SANtricity Storage Features ......................................................................................... 38
   3.6 SANtricity Management Integration .............................................................................. 41

4 **SANtricity Software Specifications for EF600 Hardware** .............................................. 46

5 **EF600 Hardware Configurations** ................................................................................... 47
   5.1 Controller Shelf Configurations .................................................................................... 47
   5.2 Controller Host Interface Features ................................................................................ 49
   5.3 Hardware LED Definitions ............................................................................................ 51
   5.4 Drive LED Definitions .................................................................................................. 58

6 **E-Series Product Support** ................................................................................................ 59
   6.1 Controller Shelf Serial Number ................................................................................... 59
   6.2 License Keys .................................................................................................................. 60

7 **Conclusion** ...................................................................................................................... 62

Appendix – **Understanding SSD Endurance and Over-Provisioning** ................................. 62
   SSD Endurance ................................................................................................................... 62
   Over-Provisioning .............................................................................................................. 62
   Write Amplification Factor ............................................................................................... 63
   Steady-State Performance .................................................................................................. 63
   EF600 Free Capacity Unmap and Over-Provisioning ......................................................... 64
   Reserving Free Capacity .................................................................................................... 64
Figure 13) SANtricity Unified Manager login page

Figure 14) SANtricity Unified Manager landing page—discover and add arrays

Figure 15) SANtricity Unified Manager landing page

Figure 16) Creating a group to organize arrays in SANtricity Unified Manager

Figure 17) Creating a group in Unified Manager

Figure 18) SANtricity Unified Manager showing a newly created group

Figure 19) SANtricity Unified Manager Operations view

Figure 20) SANtricity System Manager home page

Figure 21) System Manager Storage page

Figure 22) System Manager Hardware page

Figure 23) System Manager Settings page with new security tiles

Figure 24) System Manager Support page

Figure 25) System Manager Support Center

Figure 26) SANtricity System Manager directory server setup wizard

Figure 27) Role Mapping tab in the directory server settings wizard

Figure 28) SANtricity System Manager views change according to user permission level

Figure 29) Initial step required to set up web server certificates

Figure 30) Expanded SANtricity System Manager Certificates tile

Figure 31) Opening the API documentation

Figure 32) Example of expanding the Device-ASUP endpoint

Figure 33) REST API documentation sample

Figure 34) Sample output from the Try It Out button

Figure 35) Device-asup endpoint possible response codes and details

Figure 36) Opening the CLI Command Reference

Figure 37) EF600 front view with bezel

Figure 38) EF600 front view (open)

Figure 39) EF600 rear view

Figure 40) EF600 array with HIC options

Figure 41) ODP on front panel of EF600 controller shelf

Figure 42) Setting the shelf ID by using SANtricity System Manager

Figure 43) Viewing system status information by using SANtricity System Manager

Figure 44) LEDs on the EF600 with 2-port 200Gb IB HIC

Figure 45) LEDs on the EF600 with 2-port 100Gb IB HICs

Figure 46) LEDs on the EF600 with 4-port 32Gb IB HICs

Figure 47) EF600 drive carrier LEDs

Figure 48) Controller shelf SN

Figure 49) SANtricity System Manager Support Center tile showing chassis serial number

Figure 50) Changing the feature pack from Settings > System view

Figure 51) Change Feature Pack option
1 Introduction

NetApp® EF600 arrays have a modern look, as shown in Figure 1, use end-to-end NVMe NE224 drive shelves, and are managed by the secure web-based NetApp SANtricity® System Manager UI. The array’s performance capabilities enable new-generation analytics and artificial intelligence (AI) workloads to run faster.

Figure 1) New-generation EF600 all-flash array with bezel on and bezel off.

In one powerful all-flash array package, the EF600 array delivers optimal performance for both random workloads and large sequential workloads. The array can deliver consistent response times for up to two million 4KB random read IOPS at 250μsec with as few as 24 NVMe SSDs. The same configuration can deliver up to 44GBps large sequential read throughput and about 12.5GBps cache-mirrored large sequential write throughput. When your workload meets the criteria of the built-in full stripe write acceleration feature, you can accelerate write performance up to 24Gbps.

This performance capability builds on a legacy of generation-over-generation performance gains that NetApp EF-Series all-flash arrays have delivered. Figure 2 shows the comparison between each generation of EF-Series system and the associated SANtricity software release by comparing a 4KB random read performance benchmark.
The EF600 array is used for storage solutions that require the depth of enterprise-grade SAN storage and that consistently deliver response times in the sub-150µsec range. The array supports the SCSI over FC protocol and the NVMe/FC protocol on the 32Gb FC host interface card (HIC) in addition to NVMe/IB and NVMe/RoCE on the 100Gb or 200Gb IB HIC.

Note: NVMe/IB, NVMe/RoCE, and NVMe/FC protocols are supported on the EF600. The EF570 and E5700 controllers also support these protocols with the 64GB memory option.

This performance versatility is enhanced by multiple SSD choices to achieve the price/performance combination that fits your business need. Current drive choices include:

- Entry-level 1.9TB SSDs for small fast, random workloads
- Fast, large-capacity (3.8TB) SSDs to support higher-capacity sequential workloads, random workloads, or mixed workloads
- 7.6TB and 15.3TB SSDs for fast, large-capacity requirements

EF-Series products have a documented history of delivering up to 99.9999% availability when systems are properly sized, deployed, and maintained with NetApp Support agreements. EF-Series products also include NetApp AutoSupport® technology to enhance your ongoing product experience.

Each EF600 controller provides a single Ethernet management port for out-of-band management. The EF600 array also introduces new, faster host interface options that fit the needs of the world’s most demanding storage environments. These options are in one easy-to-install and easy-to-maintain hardware and integrated management software package.

This package includes your choice of the following HICs:

- Two four-port 32Gb FC (OM4 fiber required)
- Two two-port 100Gb IB (requires 100Gb-capable cables and host channel adapters [HCAs])
• One two-port 200Gb IB (requires 200Gb-capable cables and HCAs)
  
  **Note:** You can download and install a software feature pack in the field to change the host protocol between NVMe/IB and NVMe/RoCE when using the 100Gb IB HIC.

Figure 3 identifies the various interface ports on the EF600 controller.

Figure 3) EF600 controller with ports identified.

For optical connections, you must order appropriate small form-factor pluggable (SFP) modules for your specific implementation. Consult the NetApp Hardware Universe for a full listing of available host interface equipment.

For detailed instructions about how to change host protocols, go to Upgrading > Hardware Upgrade on the E-Series and SANtricity 11 Resources page.

The EF600 continues the E-Series legacy of providing fast, simple, reliable, and flexible SAN storage regardless of the workload. NetApp EF600 all-flash arrays can support the workload if the following conditions are met:

• Hosts are qualified with EF-Series arrays.
• The hosts use SAN access to the storage, whether directly connected or fabric connected.
• The storage is managed at the host or file system level.

In fact, some of the world’s most demanding online transactional workloads run on EF-Series arrays because these arrays are blazing fast, simple to install and operate, and extremely reliable, providing up to 99.9999% data availability. These highly flexible SAN building blocks can be applied when you need them and can be plugged into your current application environment on demand without disrupting your primary storage management strategy. EF-Series arrays can operate in a space as small as 2U, seamlessly integrate with many software layers, and still deliver consistently low-latency performance. These capabilities make EF-Series arrays an optimal SAN building block for any size enterprise that needs to support demanding online or database-reliant workloads.

Whether you are running Oracle Automatic Storage Management (ASM), Microsoft SQL Server, Splunk real-time analytics, or specialty applications with demanding response-time requirements, the EF600 array maintains its performance profile. To fully maximize performance, only minor setting changes are required when you create disk pools, volume groups, or volumes to switch between high-IOPS configurations and high-throughput configurations. This characteristic makes EF-Series arrays easy to deploy regardless of your workload.

EF600 arrays use the web-based SANtricity System Manager GUI to manage individual arrays, and SANtricity Unified Manager enables you to organize and manage multiple new-generation E-Series and
EF-Series arrays from the new API-based central management application. The built-in web services API integration or the management client-based web services package makes the EF-Series product line easier than ever to integrate with your standard API-driven environment. The following sections provide broad product information, including technical details about SANtricity features.

2 Key Differences Between EF600 and Previous-Generation EF-Series Arrays

2.1 End-to-End NVMe

This is not the first venture into NVMe for NetApp EF-Series arrays. NetApp EF570 and E5700 systems set the stage for the NetApp EF600 system. The same NVMe over Fabrics (NVMe-oF) protocols that are available on the EF600 are also available on the EF570 and E5700 systems: NVMe/FC, NVMe/RoCE, and NVMe/IB. However, these systems were not end-to-end NVMe and only supported NVMe on the front end from the host to the HIC and SCSI from the HIC to the drives, as shown in Figure 4. This approach enabled NetApp to drop the latency on the front end by roughly 20µsec.

Figure 4) NVMe-oF front-end only on the EF570 and E5700.

- Linux Host
- IB HCA, RDMA/NIC or FC HBA
- NVMe over Fabrics (IB, RoCE or FC)
- Front end NVMe Subsystem
- NVMe-to-SAS3 Bridge
- Back end SAS3

The EF600 now supports end-to-end NVMe from the host to the drives (Figure 5). For more information about the NetApp E-Series implementation of NVMe technology, see TR-4766: NetApp E-Series and NVMe over Fabrics Support.

Figure 5) End-to-end NVMe on the EF600.
2.2 Advanced Format (4KB Block Format)

The primary reason for implementing a 4KB block format on the EF600 is to take advantage of the change to NVMe drive technology. A side effect is that you cannot migrate 512B format drives (available on previous systems such as the EF570) over to the EF600 by simply importing the drives.

A second advantage of moving to a larger block size is the need for less metadata management for the same capacity volumes. This advantage allows you to raise the maximum disk pool capacity without adding more records to the configuration database. It also reduces metadata overhead for the configuration database itself on the EF600.

Tracking of data in cache is also less granular compared with the 512B block format. Therefore, there are future opportunities to support larger cache block sizes.

2.3 OS Support

There are few operating systems that support NVMe-oF protocols and the multipathing required for these protocols. If you want full end-to-end support for NVMe, you are limited to certain Linux distributions. With SCSI over FC, you are not limited to Linux. The advanced format mentioned earlier is another limiting factor; there is currently no support for 4KB block format on VMware.

For all other questions regarding supported configurations, see the NetApp Interoperability Matrix Tool (IMT).

2.4 Endurance and Performance Optimization

SANtricity Capacity Optimization

Beginning in SANtricity 11.60.2, when a Volume Group (VG) or a Dynamic Disk Pool (DDP) is created with the EF600 GUI, a recommended optimization capacity is generated that provides a balance of performance, drive wear life, and available capacity. A portion of the usable capacity is automatically set aside to increase effective over-provisioning and improve endurance and write performance. The usable capacity and free capacity presented to the user is decreased accordingly, as shown in Figure 6.
A Quick Help function has also been added to the Usable Capacity feature, as shown in Figure 7.

Users are not prompted to choose an SSD optimization setting when creating a VG or DDP, just as they are not prompted to select the number of preservation drives when creating a DDP. Instead, System Manager automatically selects a default value for the optimization capacity based on the drive model. Smaller capacity drives need a larger percentage of the total capacity reserved for optimization to increase endurance and to reach performance targets for write-intensive workloads. DDP preservation capacity serves as optimization capacity when not in use for reconstruction, so System Manager automatically decreases the amount of capacity reserved for optimization based on the number of preservation drives in the pool. Table 1 shows the recommended optimization capacities for different drive sizes.
SSD drives have longer life and better maximum write performance when a portion of their capacity is unallocated. The rated endurance is based on the amount of over-provisioning in the SSD.

The topics of endurance, over-provisioning, write amplification factor, and workload conditioning are explored in the Appendix at the end of this document to provide a basis for understanding how leaving free capacity effectively increases the level of over-provisioning in the drives in each VG or DDP. Increasing over-provisioning can be expected to increase both SSD endurance and maximum sustained write performance, especially for lower-capacity drives.

**Note:** Optimization capacity is reserved by default only for VGs or DDPs created with System Manager. It is not reserved for VGs or DDPs created with the CLI or with existing REST scripts. Optimization capacity settings are managed with the REST key-value endpoint, so REST scripts can be updated to mirror the functionality in System Manager.

### Adjusting Capacity Optimization

When a VG or DDP is created, a recommended optimization capacity is generated that provides a balance of performance, drive wear life, and available capacity. The Optimization Capacity slider in the Volume Group Settings dialog allows adjustments to a volume group's optimization capacity. Adjusting the slider provides for better performance and drive wear life at the expense of available capacity or additional available capacity at the expense of performance and drive wear life.

The appearance of the feature is slightly different for DDPs than for VGs. It should also be noted that the default percentage for optimization capacity is different for DDPs and VGs. This difference is due to DDPs having built-in preservation capacity. The default for the feature is to have 14% total preservation capacity between built-in preservation and additional optimization.

The user can increase or decrease the additional capacity set aside after creating the VG or DDP using a slider. To do so, complete the following steps:

1. In System Manager, go to Storage > Pools & Volume Groups.
2. Select the desired volume group and then click View/Edit Settings.

---

**Table 1) Optimization capacity and effective over-provisioning.**

<table>
<thead>
<tr>
<th>Drive Capacity</th>
<th>Recommended Optimization Capacity (System Manager Defaults)</th>
<th>Approximate Effective Over-provisioning</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.92TB</td>
<td>28%</td>
<td>49%</td>
</tr>
<tr>
<td>3.84TB</td>
<td>14%</td>
<td>24%</td>
</tr>
<tr>
<td>7.68TB</td>
<td>10%</td>
<td>19%</td>
</tr>
<tr>
<td>15.36TB</td>
<td>4%</td>
<td>12%</td>
</tr>
</tbody>
</table>
3. Navigate to the Settings tab.

4. Use the slider to adjust the Optimization Capacity for Volume Groups.
5. Or, for DDP, use the slider to adjust the Additional Optimization Capacity.
Note: There is nothing to prevent a user from creating a VG or DDP with the GUI and then using REST to create volumes that exceed the usable capacity presented by the GUI, because the GUI adjusts to these changes.

3 SANtricity Management Features

NetApp E-Series and EF-Series arrays have a rock-solid reputation for reliability, availability, simplicity, and security. The NetApp SANtricity 11.60.2 release builds on that legacy by adding a secure CLI to the SANtricity System Manager and improving configuration of mirroring in the SANtricity Unified Manager.

The new-generation E-Series and EF-Series arrays running the latest SANtricity OS are common criteria certified (NDcPP v2 certification) and are listed on the Canadian Communications Security Establishment (CSE) site.

Note: The EF600 is in the certification process at the time of writing.

3.1 Deployment

The decisions about which components to install if you have purchased an EF600 all-flash array depend on how you answer the questions that are shown in Figure 8.
Introduction to NetApp EF600 Array
Feature Overview with SANtricity

Figure 8) Decision tree for SANtricity management components to install.

Note: If you have only new generation EF600, E5700, or E2800 storage arrays, an alternative to installing Unified Manager to manage multiple arrays is to simply bookmark each array in a web browser.

Single EF600 Storage Array
If you only have a single new array, all the configurations can be handled from SANtricity System Manager. Figure 9 illustrates this configuration.

Figure 9) Managing a single EF600 with SANtricity System Manager.

Multiple New Generation Storage Arrays
If you have one or more new generation storage arrays, you can install the Unified Manager to manage your overall environment while still handling all storage array-based configuration through SANtricity System Manager. To manage multiple arrays, you can launch SANtricity System Manager from Unified Manager, as shown in Figure 10.
Mix of New-Generation and Legacy Storage Arrays

For mixed-generation environments (those that have older E2700 or EF560 arrays and new EF600, EF570, or EF280 arrays), do the following, as shown in Figure 11.

- Use the SANtricity Storage Manager EMW to launch SANtricity System Manager for array-based tasks on the EF600 storage arrays.
- Use the Array Management Window (AMW) for array-based tasks on legacy E-Series storage arrays.
For a detailed description of installing and configuring the components you choose, see the appropriate Express Guides for deployment instructions.

### 3.2 SANtricity Unified Manager

SANtricity Unified Manager is a web-based central management interface that replaces the legacy SANtricity Storage Manager Enterprise Management Window (EMW) for managing the new-generation EF600, EF570/E5700, and EF280/E2800 arrays. The Unified Manager GUI is bundled with the SANtricity Web Services Proxy and installs on a management server with IP access to the managed arrays. Unified Manager can manage hundreds of arrays.

SANtricity Unified Manager adds the following time-saving features:

- Upgrades multiple arrays with the same type of controller at one time.
- Supports Lightweight Directory Access Protocol (LDAP) and role-based access control (RBAC) just like SANtricity System Manager. It includes a simplified certificate management workflow to manage the Unified Manager or Web Services Proxy server certificates (truststore and keystore certificates).
- Supports organizing arrays by groups that you can create, name, and arrange.
- Supports importing common settings from one array to another. You save time by not duplicating setup steps for each array.
- Supports synchronous and asynchronous mirroring for E2800/EF280 and E5700/EF570 arrays through the secure SSL interface. The EMW is only required if the initiator or target array is a legacy E2700, E5600/EF560, or earlier array model.

**Note:** There is no synchronous or asynchronous mirroring support for EF600 systems.
The E-Series SANtricity Unified Manager or E-Series SANtricity Web Services Proxy is available on the NetApp Support site’s [software download page](#). Either listing takes you to the combined Web Services Proxy with SANtricity Unified Manager download page.

After the installation wizard completes, you can open Unified Manager, or you can directly access the SANtricity Web Services Proxy as shown in Figure 12.

![Final dialog box in the Web Services Proxy installation wizard.](image)

If you want to open the Unified Manager UI after the Web Services Proxy installation, open a browser and navigate to the server IP address and secure port number that was reserved during the Web Services Proxy software installation. For example, enter the URL in the form `https://<proxy-FQDN>:<port #>/`, and then select the link for Unified Manager. You could go directly to the Unified Manager login page (Figure 13) by adding `/um` to the URL—for example, `https://<proxy-FQDN>:<port #>/um`. 
3.3 SANtricity Unified Manager Navigation

The login page for SANtricity Unified Manager has a similar appearance to SANtricity System Manager and requires administrators to set the array admin password as part of the initial login. SANtricity Unified Manager has a factory default admin account: admin.

Discovering and Adding Storage Arrays

Like the SANtricity EMW, SANtricity Unified Manager must discover arrays to manage, and, like the EMW, you can discover a single array or scan a range of IP addresses to discover multiple arrays simultaneously. Select the tab or link shown in Figure 14 to open the Add/Discover wizard. After discovering arrays, you then choose to add them to be managed by Unified Manager.
After the arrays are discovered and added, they are displayed on the landing page of Unified Manager (Figure 15).

Organize Arrays by Group
After you add arrays to Unified Manager, you can group them to organize your array management environment. Figure 16 shows the EF280 arrays added to a group. This capability is available for all new-generation E-Series and EF-Series arrays.
The built-in wizard makes adding arrays to groups quick and easy, as shown in Figure 17.

SANtricity Unified Manager allows you to see just the subset of arrays in the new group, as shown in Figure 18.
Import Settings and View Operations

Other features in SANtricity Unified Manager require the ability to view operations that take some time to complete. One example is importing settings from one storage array to another. This feature is especially helpful and time saving when you install a new array in an environment that already contains E-Series or EF-Series arrays running SANtricity 11.60 or later. For example, if you want the same alerting and NetApp AutoSupport settings on all systems, use the Import Settings wizard to select the setting category, the array to copy from, and the array to import to, and click Finish. The operation to copy the settings is displayed in the Operations view, as shown in Figure 19.

**Note:** Be careful when importing settings from another storage array, especially if you have different alerting requirements and unique storage configurations. The storage configuration option is successful only when the source and destination arrays have identical hardware configurations. The import feature does not show details about the pending import and does not prompt for confirmation. When you click Finish, you cannot stop the copy/import process.

Update SANtricity OS Through Unified Manager

To upgrade the array’s firmware, complete the following steps:

1. Import SANtricity OS software into Unified Manager’s SANtricity OS Software Repository by using Manage SANtricity OS Software Repository under Upgrade Center on the landing page.
2. On the Unified Manager landing page, click Upgrade Center, and then click Upgrade SANtricity OS Software.

3. In the Upgrade SANtricity OS Software window, select the following items:
   - The desired SANtricity OS and/or NVSRAM files
   - The arrays to be upgraded that are appropriate to the selected SANtricity OS files
   - Whether to transfer and activate the OS files immediately or later

4. Click Start to continue.
5. On the Confirm Transfer and Activation page, type `upgrade` and then click Upgrade to begin the SANtricity OS files transfer.

6. After the transfer starts, the Upgrade SANtricity OS Software page is displayed. The status of the selected arrays is displayed throughout the upgrade process. The first status is Health Check in Progress, then File Transfer in Progress, and finally Reboot in Progress.
7. After the files have been transferred and the controllers have completed rebooting, the status changes to OS Software Upgrade Successful.

8. On the Unified Manager landing page, the SANtricity OS Software version reflects the newly installed SANtricity OS version.

**SANtricity Unified Manager Security**

SANtricity Unified Manager supports the same secure management features as SANtricity System Manager, including LDAP, RBAC, and SSL certificates. For complete details and workflow examples, see TR-4712: NetApp SANtricity Management Security Feature Details and Configuration Guide.
3.4 SANtricity System Manager

As discussed previously, the NetApp EF600 controller and SANtricity 11.60 use the on-box, browser-based management interface. However, you can still use the legacy SANtricity Storage Manager EMW with the EF600-based storage arrays as a launcher. As a result, the installation flow is similar to legacy E-Series arrays. You can also use the new SANtricity Unified Manager instead of the EMW if you want to manage only EF600, EF570/E5700, and EF280/E2800 arrays. The only UI component that is never used with the EF600 storage systems is the AMW. The AMW is still used with EF560 and other legacy E-Series systems, but on the EF600 it has been replaced by the embedded, browser-based SANtricity System Manager UI.

SANtricity System Manager provides embedded management software, web services, event monitoring, and AutoSupport for EF600, EF570/E5700, and EF280/E2800 arrays. Previous arrays, such as EF560 and E2700, do not have this embedded functionality or the newer security features introduced with SANtricity System Manager 11.40 and later versions. These older arrays require installation of SANtricity Storage Manager.

EF600 storage systems are shipped preloaded with SANtricity OS 11.60, which includes SANtricity System Manager. To discover multiple EF600 storage systems running SANtricity 11.60 from a central view, download SANtricity Unified Manager (which includes the Web Services Proxy) from the NetApp Support site. Then load it on a management server that has IP access to the storage systems.

If you do not want to use the SANtricity EMW or SANtricity Unified Manager to discover and manage your E-Series arrays, you do not need to download and install the legacy SANtricity Storage Manager or Web Services Proxy software. When customers implement E-Series with Windows and Linux operating systems, they can use the settings in the Host Utilities to properly configure each host, according to the latest Interoperability Matrix Tool (IMT) guidance. See the appropriate OS Express Guide for host setup requirements, instructions, and references. The guides are available from the NetApp Support site at https://mysupport.netapp.com/eseries.

Note: Host packages are not required for NVMe-oF installations. See the appropriate OS Express Guide for host setup requirements, instructions, and references. The guides are available from the NetApp Support site at https://mysupport.netapp.com/eseries.

Note: Also, note that for first-time customers, creating an account on the NetApp Support site can take 24 hours or more. New customers should register for Support site access well before the initial product installation date.

System Manager Navigation

After you log in to SANtricity System Manager, the home page is displayed, as shown in Figure 20.

- The icons on the left let you navigate through the System Manager pages and are available on all pages. The text can be toggled on and off.
- The items on the top right (Preferences, Help, Log Out) are also available from any location in System Manager.
- At the bottom-right corner is an architectural view of your array that lets you provision the storage.
Figure 20) SANtricity System Manager home page.

Figure 21, Figure 22, Figure 23, and Figure 24 show the other four main pages that are used in SANtricity System Manager and that are accessible from anywhere in the application.
Figure 21) System Manager Storage page.

Figure 22) System Manager Hardware page.
Figure 23) System Manager Settings page with new security tiles.

Note: Figure 23 shows the view for an administrator or security administrator. Others with a lower access permission level will see only the Alerts and System tiles.

Figure 24) System Manager Support page.

Figure 25 displays the Support Center, which you can reach by selecting the Support Center tile on the Support page. From the Support Center, use navigation tabs to reach support topics.
SANtricity System Manager Security

SANtricity System Manager supports multiple levels of management interface security including:

- Support for directory services through LDAP.
- Support for RBAC: five standard roles with varying permission levels.
- Support for certification authority (CA) and SSL certificates.
- Implementation of a secure CLI. The CLI is secure when the certificates are installed. Syntax and invocation are the same as in the legacy CLI, but additional security parameters are supplied.
- Security enhancements that extend to the onboard web services API, where user account passwords are now required.

**Note:** If you want to run in the previous security mode with a single administrative password and still use symbols to communicate through the legacy API, the new security features can be disabled by the admin or security users.
LDAP and RBAC

LDAP is a commonly used communication protocol that enables directory servers such as Microsoft Active Directory to provide centralized identity control over user and group definitions. The directory service is used by many devices in a network infrastructure to identify and authenticate users seeking access to devices in the network.

RBAC is software on the E-Series array that defines standard user levels, each with a well-defined set of access permissions. A user is authenticated as a member of a group, and specific permissions are set on the array side to define the type of access that user or group is allowed. This approach enables SANtricity 11.40 and later versions to provide the granularity of access that customers require.

The permission level with each role is defined in Table 2.

<table>
<thead>
<tr>
<th>Table 2) Built-in roles and associated permissions.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Role Name (Log In As)</td>
</tr>
<tr>
<td>Root Admin (admin)</td>
</tr>
<tr>
<td>Security Admin (security)</td>
</tr>
<tr>
<td>Storage Admin (storage)</td>
</tr>
<tr>
<td>Support Admin (support)</td>
</tr>
<tr>
<td>Monitor (monitor)</td>
</tr>
</tbody>
</table>

Setting Up the Directory Server and Roles

Directory servers, like most data center devices, are complex and designed to fulfill many use cases. However, the E-Series LDAP/RBAC implementation focuses on authentication and two main elements: users and groups. As with most applications, you must understand a few acronyms and follow a few conventions to set up communication between the E-Series array and the directory server. The most critical acronyms to understand are as follows:

- **CN.** Stands for commonName, used to identify group names as defined by the directory server tree structure.
- **DC.** Stands for domainComponent, the network in which user and groups exist (for example, netapp.com).
- **DN.** Stands for distinguishedName, the fully qualified domain name made up of one or more comma-separated common names, followed by one or more comma-separated DCs (for example, CN=functional_group_name,CN=Users,DC=netapp,DC=com).

E-Series systems follow a standard web server implementation on the controllers, and information about the general directory services setup is available on the web. As a result, setting up the service on E-Series systems only requires some fields, which are listed in Table 3.
<table>
<thead>
<tr>
<th>Field Name</th>
<th>Definitions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domain (for example, netapp.com)</td>
<td>Network domains defined in the directory server of which users accessing the storage array are members.</td>
</tr>
<tr>
<td>Server URL</td>
<td>Could be a fully qualified domain name or IP and port number with the format ldap://<a href="">IP:port_number</a> (port 389 or port 636 for LDAPS).</td>
</tr>
<tr>
<td>Bind account</td>
<td>Format is CN=binduser,CN=Users,DC=&lt;some_name&gt;,DC=com.</td>
</tr>
<tr>
<td>Bind account password</td>
<td>Password for bind account user.</td>
</tr>
<tr>
<td>Search base DN</td>
<td>Format is CN=Users,DC=&lt;some_name&gt;,DC=com.</td>
</tr>
<tr>
<td>Username attribute</td>
<td>The LDAP attribute that defines the username. Example: sAMAccountName: standard entry for legacy Windows-based browsers, including Windows 95, Windows 98, and Windows XP. Linux can have other designations.</td>
</tr>
<tr>
<td>Group attributes</td>
<td>The LDAP attributes that defines the group(s) to which a given user belongs. Example: memberOf is a standard attribute.</td>
</tr>
</tbody>
</table>

Figure 26 shows an example Active Directory server integration with SANtricity System Manager. The entries are all examples except for username attributes and group attributes in the privileges section. Those items are standard entries for Windows and are not likely to change for most implementations.
The array roles for the specified user groups are set in the Role Mapping tab. As shown in Figure 27, users who are members of the StorageAdmin, StorageTechs, and ITSupport groups are authenticated as branches of the Users group @cre.com. When users in one of those groups log in to the array, they are allowed access to certain views and functions in the management interface according to the permissions granted.
Note: The monitor role is automatically added to all group DNs. Without monitor permission, users in the associated mapped group are not able to log in to the array.

Multiple groups can be defined and mapped to specific roles that meet individual business requirements. Figure 28 shows the difference in user views and access to features according to access permission level. The login on top provides monitor and support access, but it does not provide security access like the admin login below it.
SANtricity System Manager views change according to user permission level.

Logged-in as a user who does not have security access/permission

Logged-in as admin with full user permission to set-up security features

SANtricity Web Server Security Certificates

In addition to authentication and access control, SANtricity System Manager supports standard CA certificates. This support enables secure communications (SSL/TLS) between browser clients and the E-Series built-in web servers on the controllers. On EF600 arrays, the SANtricity System Manager UI is accessed through one of the two controllers. (In the legacy SANtricity Storage Manager application, access was through both controllers simultaneously.) As a result, all communication to the other controller in the EF600 array is performed through the midplane in the shelf. Because you can log in to either of the controllers through the web browser, both controllers must run a web server instance. For proper communication, both controllers must present a self-signed certificate to each other. This process happens automatically when the admin or security user logs in to each controller and opens the Certificates tile. Figure 29 shows the dialog box that is displayed the first time the tile is opened.
You must accept the self-signed certificate to continue setting up certificates. The process takes you to another webpage, where the certificate is created in the background. Follow the prompts to complete the process. When the process is complete, the array requires the admin user or a user with security permissions to log in again. Both controllers are then displayed with valid local host certificates, as shown in Figure 30.

To enable the E-Series onboard web servers to validate certificates from external client browsers, the controllers are preloaded with industry-standard CA root certificates. To view the standard root certificates, select the Trusted tab in the Certificates tile window shown in Figure 30 and then select Show Preinstalled Certificates from the drop-down menu.

**Multifactor Authentication**

**Feature Overview**

Multifactor authentication (MFA) includes several functional areas on EF600 arrays:

- **Authentication with Security Assertion Markup Language (SAML) 2.0 to support MFA.** You can manage authentication through an identity provider (IdP) by using SAML 2.0. An administrator establishes communication between the IdP system and the storage array and then maps IdP users to the local user roles embedded in the storage array. Using IdP allows the administrator to configure MFA.
• **Digitally signed firmware.** The controller firmware verifies the authenticity of any downloadable SANtricity firmware. Digitally signed firmware is required in controller firmware version 8.42 (SANtricity 11.40.2) and later. If you attempt to download unsigned firmware during the controller upgrade process, an error is displayed, and the download is aborted.

• **Certificate revocation checking by using Online Certificate Status Protocol (OCSP).** Certificate management includes certificate revocation checking through an OCSP server. The OCSP server determines whether the CA has revoked any certificates before the scheduled expiration date. The OCSP server then blocks the user from accessing a server if the certificate is revoked. Revocation checking is performed whenever the storage array connects to an AutoSupport server, external key management server, LDAPS server, or syslog server. Configuration tasks are available from Settings > Certificates and require security admin permissions.

• **Syslog server configuration for audit log archiving.** In access management, you can configure a syslog server to archive audit logs. After configuration, all new audit logs are sent to the syslog server; however, previous logs are not transferred. Configuration tasks are available from Settings > Access Management and require security admin permissions.

**How MFA Works**

MFA is provided through the industry-standard SAML protocol. SAML does not directly provide the MFA functionality; instead, it allows the web service to send a request to an external system. The external system requests credentials from the user and verifies those credentials. Information about the authenticated user is then returned to the web service to allow the user to be assigned appropriate roles. With the previous E-Series authentication methods, the web service was responsible for requesting the user credentials and authenticating the user. With SAML, an external system provides all authentication activity. The external system can be configured to require any amount and types of user authentication factors.

SAML identifies two types of systems that cooperate to provide authentication of users:

• **Identity provider.** The identity provider (IdP) is the external system that does the actual authentication of users by requesting the user credentials and verifying their validity. Maintenance and configuration of the IdP is your responsibility.

• **Service provider.** The service provider (SP) is the system that sends a request to the IdP to have a user authenticated. For E-Series storage arrays, the controllers are the service providers; each controller is a separate SP.

Using SAML to provide MFA also enables single sign-on (SSO) capabilities. If multiple applications are configured to use the same IdP, SSO enables them to accept the same user credentials without requiring users to reenter them. The SSO feature is available only if the user is accessing these applications with the same browser.

Note that when SAML is enabled, SANtricity System Manager is the only management access point. There is therefore no access through the SANtricity CLI, the SANtricity Web Services REST API, in-band management (I/O path that uses a host agent), or native SYMbol interface. The lack of SYMbol access means that you cannot use the Storage Manager EMW or other SYMbol-based tools such as the NetApp Storage Management Initiative Specification (SMI-S) provider.

For more information about MFA, see the E-Series online help center and the [E-Series Documentation Center](https://www.netapp.com/documentation/e-series/). For detailed explanations about the full set of SANtricity management security features and settings, see [TR-4712: NetApp SANtricity Management Security Feature Details and Configuration Guide](https://www.netapp.com/documentation/tr-4712-en.html).
3.5 SANtricity Storage Features

SANtricity offers several layers of storage features, including security for data at rest, features that manage host paths, features to manage large-capacity drives that ensure data integrity and efficiently manage drive faults, and features that provide data protection. The following sections describe many of the features and provide links to additional information resources.

Drive Encryption

When external key management is enabled from the Settings tile, use the Key Management tab to generate a certificate signing request (CSR) file. Use the CSR file on the key management server to generate a client certificate. Import the client certificate from the Key Management tab to enable secure communication between the E-Series controllers and the external key management server. For more information about the SANtricity drive security feature, see the E-Series online help center and TR-4474: NetApp SANtricity Drive Security - Feature Details Using SANtricity OS 11.60.

SANtricity Host and Path Management Features

When considering the elements of E-Series multipath functionality, you must understand two concepts. The first is controller-to-volume ownership and how path failover between controllers is managed through asymmetrical logical unit access (ALUA) for SCSI hosts or asymmetric namespace access (ANA) for NVMe-oF hosts. This scenario occurs when the primary paths to an E-Series volume (I/O paths through the owning controller) are lost. The second concept concerns how the multipath driver on the host interacts with multiple ports on each E-Series controller (target port group support, or TPGS for SCSI hosts, or ANA for NVMe-oF hosts) to spread I/O across the interfaces and maximize performance. For a deep explanation of E-Series multipath behavior, see TR-4604: Clustered File Systems with E-Series Products: BPG for Media.

The design of the E-Series multipath behavior has evolved from a host multipath driver–managed scenario (explicit failover) to the new E-Series–led path management model (implicit failover). However, the E-Series fundamentals have not changed. For example, E-Series systems have asymmetric dual active controllers with the following characteristics:

- Volume ownership alternates as volumes are provisioned.
- Write I/O is mirrored to the peer controller.
- Both controllers have access to every volume on the array.
- Both controllers have multiple host ports.
- If one E-Series controller fails, the other controller takes control of all the volumes and continues to process I/O.

These attributes allow host multipath drivers to spread I/O across each controller’s ports that are associated to the volumes owned by that controller. The drivers use path policies such as least queue depth and round robin. Depending on the host operating system, the default path policy is one of these two methods.

When all the paths from a host to one E-Series controller are lost, I/O from that host to the volumes owned by that controller is routed to ports on the other E-Series controller, which performs I/O shipping across the shelf midplane to the controller that owns the volumes. In parallel, a volume-ownership timer is set, and changes in controller-to-volume ownership are delayed until the timer expires. This delay time is long enough for links to reset and return to service (the default is 5 minutes). After the timer expires, the array decides whether to initiate a change of volume ownership to the peer controller. The decision is based on whether the non-owning controller is still receiving more than 75% of the I/O.

Table 4 provides a list of SANtricity host types and the associated support for implicit failover/failback.
Table 4) SANtricity host types and associated failover behavior.

<table>
<thead>
<tr>
<th>Host Type</th>
<th>ALUA/AVT Status</th>
<th>Implicit Failover</th>
<th>Implicit Failback</th>
<th>Automatic Load Balance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linux DM-Multipath</td>
<td>Enabled</td>
<td>Supported</td>
<td>Supported</td>
<td>Supported</td>
</tr>
<tr>
<td>(kernel 3.10 or later)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VMware</td>
<td>Enabled</td>
<td>Supported</td>
<td>Supported</td>
<td>Supported</td>
</tr>
<tr>
<td>Windows</td>
<td>Enabled</td>
<td>Supported</td>
<td>Supported</td>
<td>Supported</td>
</tr>
<tr>
<td>Windows cluster</td>
<td>Enabled</td>
<td>Supported</td>
<td>Not supported</td>
<td>Not supported</td>
</tr>
<tr>
<td>ATTO cluster (all</td>
<td>Enabled</td>
<td>Supported</td>
<td>Not supported</td>
<td>Not supported</td>
</tr>
<tr>
<td>operating systems)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Several uncommon host types also exist as well as host types that are only to be used if instructed to by support. Appearance on the host type list does not imply the option is fully supported; for more information, refer to the NetApp Interoperability Matrix Tool (IMT) as well as the SANtricity online help.

SANtricity Reliability Features

Table 5 provides a list of SANtricity reliability features and a brief explanation of each with references to additional information.

Table 5) SANtricity 11.60 features for long-term reliability.

**Dynamic Disk Pools.** DDP is NetApp patented technology that allows administrators to group a set of drives on the array to form a specialized RAID configuration. The configuration uses an 8+2 RAID 6–like algorithm to stripe I/O across all drives in the pool. The technology provides consistent performance, but it excels when a drive fails; rebuilds often take hours instead of days when the system uses large-capacity NVMe SSDs. For feature details, see TR-4652: SANtricity OS Dynamic Disk Pools - Feature Description and Best Practices.

**DDP capacity limits.** As of SANtricity 11.60.1, the total allowable capacity associated to the DDP feature on an EF600 controller is 12PiB. For the EF570 or E5700 controller, the total allowable capacity is 6PiB. The maximum single volume size is 4PiB.

**Media scan with redundancy check.** A background scan of media is run on a set schedule and detects data integrity issues. This feature is critically important to turn on by default when you provision new volumes.

Note: If you have been running I/O to an array with media scan turned off, consult with NetApp Technical Support before you turn it on.

**Data assurance (T10 PI).** This feature confirms data integrity from the HIC to the drive (end-to-end in the storage array). This data integrity is especially important with large-capacity drives.

**Cache mirroring.** Each E-Series controller owns a set of volumes and is responsible for processing I/O to and from those volumes. Both controllers have access to all volumes, and by default, all incoming writes are cached in memory on the peer controller. This mechanism enables a second level of data integrity checking and enables E-Series and EF-Series arrays to handle controller failover scenarios gracefully.

**Nondisruptive controller firmware upgrade.** Using the ALUA or ANA host types with multiple paths to hosts and an upgrade wizard that activates one controller at a time, this feature prevents upgrades from affecting host-to-volume access.

Note: Not all host operating systems support the ALUA or ANA host type.
EF600 Reliability Features with SANtricity 11.60.x

**Proactive drive monitor and data evacuator.** Nonresponsive drives are automatically power-cycled to see if the fault condition can be cleared. If the condition cannot be cleared, the drive is flagged as failed. For predictive failure events, the evacuator feature starts to remove data from the affected drive to move the data before the drive fails. If the drive fails, rebuild resumes where the evacuator was disrupted, reducing the rebuild time.

**Automatic drive fault detection, failover, and rebuild.** You can perform these tasks by using global hot spare drives for standard RAID and spare pool capacity for DDP.

**SSD wear-life tracking and reporting.** This metric is found in the Hardware tab's Drive Settings dialog box. It indicates the wear life of SSDs and replaces two SSD wear-life metrics (average erase count and spare blocks remaining) that were in previous versions of SANtricity. The metric is Percent Endurance Used; to access it, select a drive from the hardware view and then select Settings.

**Online drive firmware upgrade.** This feature upgrades one drive at a time and tracks writes to the affected drives during the upgrade window; it should be used only during low write I/O periods.

**Note:** Parallel drive firmware upgrades are supported offline to upgrade multiple drives more quickly during a maintenance window.

**Automatic load balancing.** This feature provides automated I/O workload balancing and confirms that incoming I/O traffic from hosts is dynamically managed and balanced across both controllers. The workload of each controller is continually monitored and analyzed in the background. When I/O on one controller significantly exceeds the I/O on the other controller for a prolonged, predictable period, SANtricity can change volume ownership from the busy controller to the less busy controller. The feature does not react to short-term changes in I/O patterns. However, when a change of ownership is needed, SANtricity interacts with the affected host multipath driver to initiate an implicit path failover. Most current server operating systems and associated multipath drivers support implicit failover. For more information, search for “What is automatic load balancing?” in the System Manager online help.

**Embedded SNMP agent.** For the EF600 controller, SNMP is supported natively. The embedded SNMP agent complies with the SNMP V2C standard and RFC 1213 (MIB-II). For more information, search for “manage SNMP alerts” in the System Manager online help.

**Automatic alerts.** This feature sends email alerts to notify data center support staff about events on the storage array.

**Event Monitor and system log.** The SANtricity Storage Manager Event Monitor automatically records events that occur on the storage array. Syslog enables a second level of activity tracking that allows you to connect events with associated changes recorded in the system log.

**AutoSupport.** E-Series products have supported AutoSupport for several releases.

**Ability to enable or disable AutoSupport maintenance window.** AutoSupport includes an option for enabling or suppressing automatic ticket creation on error events. Under normal operation mode, the storage array uses AutoSupport to open a support case if there is an issue. To enable or disable the AutoSupport maintenance window, select Support > Access Management > AutoSupport.

**SANtricity Data Management Features**

E-Series EF600 systems ship with significant storage management features that can be activated from SANtricity System Manager. Table 6 lists the EF600 features that are standard with SANtricity 11.60.x.
Table 6) EF600 standard features that are included with SANtricity 11.60.x.

<table>
<thead>
<tr>
<th>EF600 Data Management Features with SANtricity</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>SANtricity System Manager (embedded single-array management).</strong> The browser-based, on-box SANtricity System Manager is used to manage individual EF600, EF570/E5700, and EF280/E2800 storage arrays.</td>
</tr>
<tr>
<td>• Access all array setup, storage provisioning, and array monitoring features from one UI.</td>
</tr>
<tr>
<td>• System Manager includes an embedded RESTful API that can be used for management.</td>
</tr>
</tbody>
</table>

**Volume workload tags.** SANtricity System Manager provides a built-in volume tagging feature that allows administrators to organize the volumes in their arrays by workload type. Usually, the tag is only for organization purposes. In some cases, the Volume Creation wizard provides suggested configuration or volume segment size settings associated with the workload type. You do not have to accept the recommendations. The configurations are suggestions for saving time when you provision volumes for common applications.

**Storage partitions.** Partitions can consist of an individual host without shared volumes, host groups with shared volumes, or a combination of both. This concept has been abstracted in the new System Manager, but you can view the partitions by using a CLI.

**Changing host protocol.** This capability is supported through new feature pack keys. To obtain free activation codes and detailed instructions for each starting and ending protocol, go to the E-Series and SANtricity 11 Resources page (Upgrading > Hardware Upgrade).

**SANtricity Copy Services Features**

Table 7 lists standard copy services features with EF600 storage arrays.

Table 7) SANtricity copy services features.

<table>
<thead>
<tr>
<th>Standard SANtricity Copy Services Features</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>SANtricity Snapshot copies.</strong> Point-in-time NetApp Snapshot™ copies.</td>
</tr>
<tr>
<td><strong>Volume copy.</strong> Used to clone volumes for testing/development or analytics purposes.</td>
</tr>
</tbody>
</table>

For additional details and use case information about SANtricity copy services features, see TR-4458: Deploying NetApp E-Series and EF-Series Copy Services with Oracle and SQL Server Databases.

For details on using SANtricity Snapshots see TR-4747: SANtricity Snapshot Feature Overview and Deployment Guide.

### 3.6 SANtricity Management Integration

Starting with SANtricity 11.40 and continuing with SANtricity 11.60.x, the E-Series SANtricity integration model changed focus. To support today’s modernized data center operations and partner appliances, NetApp is deemphasizing legacy plug-ins and emphasizing API integration.

Table 8 shows the SANtricity APIs and toolkits that can be used for scripting and custom integration into other management tools and appliance architectures. To download the latest version of the E-Series SANtricity Web Services (REST API) visit NetApp support at http://mysupport.netapp.com/. Information for how to use Ansible with E-Series for managing your storage can be in TR-4574: Deploying NetApp E-Series with Ansible (Automating E-Series). For the Windows PowerShell toolkit, go to the NetApp PowerShell Toolkit page of the NetApp Support site.
Table 8) SANtricity APIs and toolkits.

<table>
<thead>
<tr>
<th>APIs and Toolkits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SANtricity Web Services Proxy</td>
<td>These web APIs provide a collection of REST interfaces to configure, manage, and monitor E-Series systems.</td>
</tr>
<tr>
<td>Note: You can use either the proxy or the embedded REST API for E5700/EF570/E2800/EF280 systems.</td>
<td></td>
</tr>
<tr>
<td>NetApp E-Series and Ansible</td>
<td>Ansible is a simple yet powerful orchestration tool.</td>
</tr>
<tr>
<td></td>
<td>NetApp E-Series has joined the Ansible community to provide you with a high-quality solution for managing your E-Series storage systems, regardless of scale.</td>
</tr>
<tr>
<td>NetApp PowerShell Toolkit</td>
<td>The unified toolkit provides end-to-end automation and storage management across NetApp storage systems.</td>
</tr>
<tr>
<td>SANtricity Secure CLI</td>
<td>New in SANtricity 11.60.2 is the ability to download the SANtricity Secure CLI (SMcli) from System Manager.</td>
</tr>
</tbody>
</table>

Table 9 provides a list of third platform plug-ins that use E-Series storage systems as building blocks. Usually, the plug-ins listed are available on the various provider websites. For more information about third platform integration with EF-Series storage systems, contact your NetApp sales representative.

Table 9) Third platform plug-ins that use the SANtricity Web Services Proxy.

<table>
<thead>
<tr>
<th>Software Package</th>
<th>Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>NetApp SANtricity Performance App for Splunk Enterprise</td>
<td>A display and monitor tool to report configuration and performance details of multiple E-Series systems in one interface. Requires both application and technology add-on.</td>
</tr>
<tr>
<td>Technology Add-On for NetApp SANtricity</td>
<td></td>
</tr>
<tr>
<td><a href="https://splunkbase.splunk.com/app/1933/">https://splunkbase.splunk.com/app/1933/</a></td>
<td></td>
</tr>
<tr>
<td>NetApp E-Series + Grafana: Performance Monitoring</td>
<td>The E-Series Performance Analyzer is a powerful and easy-to-use tool to monitor the performance of your E-Series storage system.</td>
</tr>
<tr>
<td><a href="https://github.com/netapp/eseries-perf-analyzer">https://github.com/netapp/eseries-perf-analyzer</a></td>
<td></td>
</tr>
</tbody>
</table>

**SANtricity Web Services Native REST API**

The SANtricity Web Services REST API is an embedded API for experienced developers. Actions performed through the REST API are applied on execution and without user prompts or confirmation dialog boxes. The REST API is URL based, and the accompanying API documentation is completely interactive. Each URL contains a description of the corresponding operation and lets you perform the action directly through the API documentation. To access the documentation, select API Documentation in the Help drop-down menu from any page in System Manager, as shown in Figure 31.
Each URL endpoint presented in the API documentation has a corresponding POST, DELETE, or GET option. These URL endpoint options, known as HTTP verbs, are the actions available through the API documentation. A sample from the REST API documentation is shown in Figure 32. You can expand or hide operations by selecting the drop-down beside the topic name or clicking the individual endpoints. Click Try It Out to execute the endpoint. You must click Execute to run an endpoint (Figure 33).

**Note:** To execute successfully, some endpoints require additional input parameters in the Try It Out dialog box. No additional input is required for this example.

**Figure 32** Example of expanding the Device-ASUP endpoint.

Select to expand or minimize

Select Try it out to execute a single endpoint against a managed array
Figure 33) REST API documentation sample.

The corresponding output for the GET device-asup verb is shown in Figure 34 and Figure 35.

Figure 34) Sample output from the Try It Out button.
Data in the REST API is encoded through JSON. The structured JSON data from the REST API can be easily parsed by programming languages (C, C++, cURL, Java, Python, Perl, and so on). JSON is simple encoding based on key-value pairs with support for list and subject objects. Objects start and end with curly braces (that is, { }), whereas lists start and end with brackets (that is, [ ]). JSON understands values that are strings, numbers, and Booleans. Numbers are floating-point values. The API documentation provides a JSON template for each applicable URL operation, allowing the developer to simply enter parameters under a properly formatted JSON command.

For more information, see the E-Series Documentation Center.

SANtricity Secure CLI

The SANtricity Secure CLI is an embedded API for experienced developers. From System Manager you can download the command line interface (CLI) package. The CLI provides a text-based method for configuring and monitoring storage arrays. It communicates via https and uses the same syntax as the CLI available in the externally installed management software package. No key is required to download the CLI.

A Java Runtime Environment (JRE), version 8 and above, must be available on the management system where you plan to run the CLI commands.

**Downloading the CLI**

- Select the Settings view > System.
- Under Add-ons, select Command Line Interface. The ZIP package downloads to the browser.
- Save the ZIP file to the management system where you plan to run CLI commands for the storage array, and then extract the file.

You can now run CLI commands from an operating system prompt, such as the DOS C: prompt.

To access the documentation, select CLI Command Reference in the Help drop-down menu from any page in System Manager A CLI, as shown in Figure 36.
4 SANtricity Software Specifications for EF600 Hardware

Table 10 lists the NetApp SANtricity software specifications for NetApp EF600-based storage systems.

Table 10) SANtricity software boundaries for EF600-based storage systems.

<table>
<thead>
<tr>
<th>Components</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Storage Hardware Components</strong></td>
<td></td>
</tr>
<tr>
<td>Shelves (controller and expansion)</td>
<td>1 total (no expansion shelves)</td>
</tr>
<tr>
<td>Drives</td>
<td>24 NVMe SSDs</td>
</tr>
<tr>
<td>SSD cache capacity</td>
<td>N/A</td>
</tr>
<tr>
<td><strong>Logical Components</strong></td>
<td></td>
</tr>
<tr>
<td>Host Partitions</td>
<td>512</td>
</tr>
<tr>
<td>Volumes per partition</td>
<td>256</td>
</tr>
<tr>
<td>Volumes per system</td>
<td>2,048</td>
</tr>
<tr>
<td>Disk pools per system</td>
<td>20</td>
</tr>
<tr>
<td>Total DDP capacity in an array</td>
<td>12PiB maximum DDP capacity per EF600 array</td>
</tr>
<tr>
<td>(maximum capacity includes RAID</td>
<td></td>
</tr>
<tr>
<td>overhead, DDP reserve capacity, and</td>
<td></td>
</tr>
<tr>
<td>a small DDP-specific overhead based</td>
<td></td>
</tr>
<tr>
<td>on the number of drives in the pool</td>
<td></td>
</tr>
<tr>
<td>and other factors)</td>
<td></td>
</tr>
<tr>
<td>**Maximum Standard Raid Capacity</td>
<td></td>
</tr>
<tr>
<td>Limits</td>
<td>Limits for standard RAID based on maximum</td>
</tr>
<tr>
<td></td>
<td>supported drives per RAID type:</td>
</tr>
<tr>
<td></td>
<td>• 30 drives of any supported capacity for</td>
</tr>
<tr>
<td></td>
<td>RAID 5 and RAID 6 (only 24 drives supported</td>
</tr>
<tr>
<td></td>
<td>with EF600)</td>
</tr>
<tr>
<td></td>
<td>• All drives of any supported capacity for</td>
</tr>
<tr>
<td></td>
<td>RAID 10</td>
</tr>
<tr>
<td>Maximum DDP single volume capacity</td>
<td>4PiB</td>
</tr>
<tr>
<td>Maximum standard RAID single</td>
<td>15EiB (theoretical maximum limit—actual</td>
</tr>
<tr>
<td>volume capacity</td>
<td>limit based on RAID type, number of data</td>
</tr>
<tr>
<td></td>
<td>drives per volume group, and the capacity of</td>
</tr>
<tr>
<td></td>
<td>the drives used)</td>
</tr>
<tr>
<td>Snapshot Copies</td>
<td></td>
</tr>
<tr>
<td>----------------------------------------</td>
<td>-------</td>
</tr>
<tr>
<td>Per Snapshot group</td>
<td>32</td>
</tr>
<tr>
<td>Per volume</td>
<td>128</td>
</tr>
<tr>
<td>Per storage system</td>
<td>2,048</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Snapshot Volumes</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Per Snapshot copy</td>
<td>4</td>
</tr>
<tr>
<td>Per system</td>
<td>1,024</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Snapshot Groups</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Per volume</td>
<td>4</td>
</tr>
<tr>
<td>Per system</td>
<td>1,024</td>
</tr>
</tbody>
</table>

For additional software limits and specifications, see the Hardware Universe.

5 EF600 Hardware Configurations

NetApp EF600 storage systems, like all NetApp E-Series arrays, use a modular approach to hardware configuration. This approach can meet most customer SAN storage requirements for flexible host interfaces and versatile drive choices without sacrificing supportability, ease of implementation, and long-term stability. The E-Series has a proven record of accomplishment for reliability and scalability to satisfy requirements in remote dedicated environments or primary data centers that provide mission-critical infrastructure.

5.1 Controller Shelf Configurations

The following sections provide detailed information about the EF600 shelf configuration.

**EF600 Controller Shelf**

The EF600 is a two-rack-unit-high (2U) shelf that holds up to 24 2.5” NVMe SSDs. It features two RAID controllers and two ENERGY STAR Platinum certified high-efficiency power supplies (1600W) with integrated fans.

Figure 37, Figure 38, and Figure 39 show the front and rear views of the EF600 controller shelf. In the example, the EF600 controllers have two 4-port 32Gb FC HICs installed.

Figure 37) EF600 front view with bezel.

![EF600 front view with bezel](image-url)
Figure 38) EF600 front view (open).

Figure 39) EF600 rear view.

EF600 Hardware Specifications

The EF600 controller has the following base hardware features:

- Ethernet port for management-related activities
- Dual 10GbE ports for future development

Table 11 lists the technical specifications for the EF600-based storage systems.

Table 11) EF600 technical specifications.

<table>
<thead>
<tr>
<th>Specification</th>
<th>EF600</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum raw system capacity (assumes 24 SSDs)</td>
<td>367TB (24 x 15.3TB SSDs)</td>
</tr>
<tr>
<td>Maximum number of drives per system</td>
<td>24 NVMe SSDs maximum</td>
</tr>
<tr>
<td>Shelf form factor</td>
<td>2U, 24 drives</td>
</tr>
<tr>
<td>Memory</td>
<td>32GB or 128GB per controller</td>
</tr>
<tr>
<td></td>
<td>64GB or 256GB per duplex system</td>
</tr>
<tr>
<td>Single HIC per controller</td>
<td>2-port 200Gb IB (supports NVMe/IB, NVMe/RoCE, SRP/IB or iSER/IB according to feature pack installed*)</td>
</tr>
<tr>
<td></td>
<td>Cannot mix protocols.</td>
</tr>
<tr>
<td></td>
<td>A software feature pack* can be applied to convert between NVMe/IB and NVMe/RoCE and between FC and NVMe/FC, because they use the same HICs.</td>
</tr>
<tr>
<td>Two HICs per controller</td>
<td>4-port 100Gb IB (supports NVMe/IB, NVMe/RoCE, SRP/IB, or iSER/IB according to feature pack installed*)</td>
</tr>
<tr>
<td></td>
<td>A software feature pack* can be applied to convert between NVMe/IB and NVMe/RoCE and between FC and</td>
</tr>
<tr>
<td></td>
<td>4-port 32Gb FC (supports NVMe/FC or SCSI over FC according to feature pack installed*); see Hardware Universe for SFP details</td>
</tr>
</tbody>
</table>
NVMe/FC, because they use the same
HICs.
- Cannot mix protocols.

<table>
<thead>
<tr>
<th>High-availability (HA) features</th>
<th>Dual active controllers with automated I/O path failover</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Support for RAID 0, 1 (10 for 4 drives or more), 5, 6, and DDP</td>
</tr>
<tr>
<td><strong>Note:</strong> It is only possible to create RAID 3 volumes through the CLI. For more information, search for “using the create volume group wizard” in SANtricity System Manager online help.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Redundant, hot-swappable storage controllers, disks, and power supplies. Fans require that you remove the controller to do a replacement.</td>
</tr>
<tr>
<td></td>
<td>Mirrored data cache with battery-backed destage to flash</td>
</tr>
</tbody>
</table>

*See the “Controller Host Interface Features” section for details of the available feature pack submodel IDs (SMIDs) for EF600 controllers.

For current supported drive availability information and encryption capability by drive capacity (full disk encryption [FDE] and FIPS), see the Hardware Universe.

### 5.2 Controller Host Interface Features

By default, the EF600 controller includes an Ethernet management port that provides out-of-band system management access.

The management port defaults to the Dynamic Host Configuration Protocol (DHCP). If you want to use static addresses to manage the EF600, simply leave the management ports disconnected for approximately 5 minutes after powering up, to allow the DHCP feature to time out. Then, you can connect with a local PC to the default IP addresses:

- Controller A  Port 1 = 192.168.128.101  Port 2 = 192.168.128.102
- Controller B  Port 1 = 192.168.129.101  Port 2 = 192.168.129.102

Host interface ports can be added, as indicated in Table 12. Each HIC supports multiple protocols.

**Table 12: Available feature pack submodel IDs (FP-SMIDs) for EF600 controllers.**

<table>
<thead>
<tr>
<th>FP-SMID</th>
<th>HIC Protocol</th>
</tr>
</thead>
<tbody>
<tr>
<td>443</td>
<td>NVMe/FC or NVMe/RoCE</td>
</tr>
<tr>
<td>444</td>
<td>NVMe/FC or NVMe/IB</td>
</tr>
<tr>
<td>448</td>
<td>FC (not NVMe)</td>
</tr>
<tr>
<td>491</td>
<td>iSER/IB</td>
</tr>
<tr>
<td>492</td>
<td>SRP/IB</td>
</tr>
</tbody>
</table>

For instructions on how to obtain and apply a software feature, see the E-Series and EF-Series Systems Documentation Center. Locate the Upgrading > Hardware Upgrade section of the page, select Change or Add Host Protocols, and download the Converting EF600 Host Protocol document.
Table 13 provides port speed details for the NVMe/FC and FC options.

Table 13) FC host interface protocol and supported speeds.

<table>
<thead>
<tr>
<th>HIC Protocol</th>
<th>Supported Speeds</th>
</tr>
</thead>
<tbody>
<tr>
<td>32Gbps FC</td>
<td>32Gbps, 16Gbps, 8Gbps</td>
</tr>
<tr>
<td>32Gbps NVMe/FC</td>
<td>32Gbps, 16Gbps, 8Gbps</td>
</tr>
</tbody>
</table>

Table 14 provides the port speed details for the new 200Gbps HIC as well as the 100Gbps HIC. The HIC autonegotiates to the link speed according to the cables and HCAs used on the host.

Table 14) IB host interface protocol and supported speeds.

<table>
<thead>
<tr>
<th>HIC Protocol</th>
<th>Supported Speeds</th>
</tr>
</thead>
<tbody>
<tr>
<td>200Gbps NVMe/IB</td>
<td>200Gbps, 100Gbps, 56Gbps</td>
</tr>
<tr>
<td>200Gbps NVMe/RoCE</td>
<td>200Gbps, 100Gbps, 50Gbps, 40Gbps, 25Gbps, 10Gbps</td>
</tr>
<tr>
<td>200Gbps SRP/IB or iSER/IB</td>
<td>200Gbps, 100Gbps, 56Gbps</td>
</tr>
<tr>
<td>100Gbps NVMe/IB</td>
<td>100Gbps, 56Gbps, 40Gbps</td>
</tr>
<tr>
<td>100Gbps NVMe/RoCE</td>
<td>100Gbps, 50Gbps, 40Gbps, 25Gbps, 10Gbps</td>
</tr>
<tr>
<td>100Gbps SRP/IB or iSER/IB</td>
<td>100Gbps, 56Gbps, 40Gbps</td>
</tr>
</tbody>
</table>

Note: NetApp does not sell IB cables for either port speed; however, cables are readily available from suppliers such as Mellanox and QLogic.

For optical connections, the appropriate SFPs must be ordered for the specific implementation. Consult the Hardware Universe for a full listing of available host interface equipment. All EF600 optical connections use OM4 optical cable.

Note: Both controllers in a duplex configuration must be configured identically.

The two HIC options are shown in Figure 40.
5.3 Hardware LED Definitions

EF600 Controller Shelf LEDs
The EF600 controller shelf has LED status indicators on the front of the shelf, the operator display panel (ODP), the rear of the shelf, the power supply, and the controller canisters. The LEDs on the ODP indicate systemwide conditions, and the LEDs on the power-fan canisters and controller canisters indicate the status of the individual units.

Figure 41 shows the ODP of the EF600 controller shelf.
Table 15 defines the ODP LEDs on the EF600 controller shelf.

Table 15) EF600 controller shelf LED definitions (front panel).

<table>
<thead>
<tr>
<th>LED Name</th>
<th>Color</th>
<th>LED On</th>
<th>LED Off</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power</td>
<td>Green</td>
<td>Power is present</td>
<td>Power is not present</td>
</tr>
<tr>
<td>Attention</td>
<td>Amber</td>
<td>A component in the controller shelf requires attention</td>
<td>Normal status</td>
</tr>
<tr>
<td>Locate</td>
<td>Blue</td>
<td>There is an active request to physically locate the shelf</td>
<td>Normal status</td>
</tr>
</tbody>
</table>

The shelf-identity feature displays a numerical value to identify the shelf. The dual seven-segment display indicates values from 00 to 99 that can be set from the NetApp SANtricity System Manager Hardware tab shown in Figure 42.
EF600 Controller Canister LEDs

The EF600 controller canister has several LED status indicators. You can verify host port status and other system-level status information by directly checking the port LEDs or by using the SANtricity System Manager GUI. For example, systemwide status information is displayed on the View Settings page, as shown in Figure 43.
LED Definitions with 2-Port 200Gb IB HIC Installed

The EF600 controller supports a single 2-port 200Gbps IB HIC. This HIC supports NVMe/IB, NVMe/RoCE, SRP/IB and iSER/IB according to the feature pack installed. Figure 44 shows the 2-port 200Gb IB HIC.

Table 16 defines the LEDs on the 2-port 200Gb IB HIC.

<table>
<thead>
<tr>
<th>Call-Out</th>
<th>LED Name</th>
<th>Color</th>
<th>LED Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PSU</td>
<td>Green/red</td>
<td>LED off: no AC power</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Green: AC present and DC output OK</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Red: AC cord unplugged or power supply failure</td>
</tr>
<tr>
<td>2</td>
<td>Link</td>
<td>Green</td>
<td>• LED on: link is up</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• LED off: link is down</td>
</tr>
</tbody>
</table>
### LED Definitions with 2-Port 100Gb IB HICs Installed

The EF600 controller supports two 2-port 100Gbps IB HICs. These HICs support NVMe/IB, NVMe/RoCE, SRP/IB and iSER/IB according to the feature pack installed. Figure 45 shows the 2-port 100Gb IB HIC.

![Figure 45: LEDs on the EF600 with 2-port 100Gb IB HICs.](image)

Table 17 defines the LEDs on the 2-port 100Gb IB HIC.

<table>
<thead>
<tr>
<th>Call-Out</th>
<th>LED Name</th>
<th>Color</th>
<th>LED Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PSU</td>
<td>Green/red</td>
<td>LED off: no AC power&lt;br&gt;Green: AC present and DC output OK&lt;br&gt;Red: AC cord unplugged or power supply failure</td>
</tr>
</tbody>
</table>
### LED Description Table

<table>
<thead>
<tr>
<th>Call-Out</th>
<th>LED Name</th>
<th>Color</th>
<th>LED Description</th>
</tr>
</thead>
</table>
| 2        | Link     | Green | - LED on: link is up  
- LED off: link is down |
| 3        | Activity | Green | - Blinking: indicates activity for the Ethernet port |
| 4        | NV LED   | Green | Defaults to on at power-up. Software turns off this LED during boot. On indicates that battery backup has been enabled to support caching activity. |
| 5        | Locate LED | Blue | - On: identifies enclosure  
- Off: not locating enclosure  

**Note:** During power-up, this LED is on initially, but it will turn off after boot-up process is complete. |
| 6        | Attention LED | Amber | - On: direct attention to the controller for service event  
- Off: no issues on controller  

**Note:** During power-up, this LED is on initially, but it will turn off after boot-up is complete (if no issues are indicated). |
| 7        | Activity LED | Green | - Blinking: activity on controller |
| 8        | Attention LED | Amber | - On: a condition that requires attention  
- Off: no special conditions |
| 9        | Link LED   | Green | - On: link up  
- Off: no link |
| 10       | Attention LED | Amber | - On: a condition that requires attention  
- Off: no special conditions |
| 11       | Link LED   | Green | - On: link up  
- Off: no link |

### Four-Port 32Gb FC HIC LEDs

The EF600 controller supports two 4-port 32Gbps FC HICs that offer the ability to autonegotiate down to 16Gbps with the 32Gbps SFP and down to 8Gbps with the 16Gbps SFP. The new 32Gbps FC HIC does
require OM4 fiber cable to connect to switches or directly to hosts. Figure 46 shows the LEDs for the 4-port 32Gbps FC HICs.

Figure 46) LEDs on the EF600 with 4-port 32Gb IB HICs.

Table 18 defines the LEDs on the 4-port 32Gbps optical HIC.

Table 18) EF600 with 4-port 32Gb FC HIC LED definitions.

<table>
<thead>
<tr>
<th>Call-Out</th>
<th>LED Name</th>
<th>Color</th>
<th>LED Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PSU</td>
<td>Green/Red</td>
<td>• LED off: no AC power&lt;br&gt;• Green: AC present and DC output OK&lt;br&gt;• Red: AC cord unplugged or power supply failure</td>
</tr>
<tr>
<td>2</td>
<td>Link</td>
<td>Green</td>
<td>• LED on: link is up&lt;br&gt;• LED off: link is down</td>
</tr>
<tr>
<td>3</td>
<td>Activity</td>
<td>Green</td>
<td>• Blinking: indicates activity for the Ethernet port</td>
</tr>
<tr>
<td>4</td>
<td>NV LED</td>
<td>Green</td>
<td>Defaults to on at power-up. Software turns off this LED during boot. On indicates that battery backup has been enabled to support caching activity.</td>
</tr>
<tr>
<td>5</td>
<td>Locate LED</td>
<td>Blue</td>
<td>• On: identifies enclosure&lt;br&gt;• Off: not locating enclosure</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><strong>Note:</strong> During power-up, this LED is on initially, but it will turn off after boot-up process is complete.</td>
</tr>
<tr>
<td>6</td>
<td>Attention LED</td>
<td>Amber</td>
<td>• On: direct attention to the controller for service event&lt;br&gt;• Off: no issues on controller</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><strong>Note:</strong> During power-up, this LED is on initially, but it will turn off after boot-up is complete (if no issues are indicated).</td>
</tr>
<tr>
<td>7</td>
<td>Activity LED</td>
<td>Green</td>
<td>• Blinking: activity on controller</td>
</tr>
<tr>
<td>8</td>
<td>Attention LED</td>
<td>Amber</td>
<td>• On: a condition that requires attention&lt;br&gt;• Off: no special conditions</td>
</tr>
<tr>
<td>9</td>
<td>Link LED</td>
<td>Green</td>
<td>• On: link up&lt;br&gt;• Off: no link</td>
</tr>
<tr>
<td>10</td>
<td>Attention LED</td>
<td>Amber</td>
<td>• On: a condition that requires attention&lt;br&gt;• Off: no special conditions</td>
</tr>
</tbody>
</table>
### 5.4 Drive LED Definitions

Figure 47 shows the LEDs on the drive carriers for the EF600 SSDs. The DE224C shelf in the EF600 architecture supports only 2.5-inch form-factor SSDs.

#### Table 19) EF600 drive LED definitions.

<table>
<thead>
<tr>
<th>LED Name</th>
<th>Color</th>
<th>LED On</th>
<th>LED Off</th>
</tr>
</thead>
<tbody>
<tr>
<td>Activity</td>
<td>Green</td>
<td>Drive has power</td>
<td>Drive does not have power</td>
</tr>
<tr>
<td></td>
<td>Blinking</td>
<td>The drive has power, and I/O is in process</td>
<td>No I/O is in process</td>
</tr>
<tr>
<td>Attention</td>
<td>Amber</td>
<td>An error occurred with the functioning of the drive</td>
<td>Normal status</td>
</tr>
<tr>
<td></td>
<td>Blinking</td>
<td>Drive locate turned on</td>
<td>Normal status</td>
</tr>
<tr>
<td></td>
<td>amber</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 19 defines the LEDs for the drives.
6 E-Series Product Support

NetApp E-Series storage systems are identified by the chassis serial number (SN) of the E-Series system shelf, not the SNs of the individual controllers in the system shelf. You must register the E-Series system shelf SN, because only that SN can be used to log a support case with NetApp.

6.1 Controller Shelf Serial Number

NetApp EF600 storage systems are shipped preconfigured from the factory (controllers have HICs and batteries installed, and controllers are installed in the controller shelf). The chassis serial number is printed on a white label that is affixed to the controller shelf behind the right end cap on the front of the chassis. The SN is circled in red on Figure 48.

The SN is also included on the shelf UL sticker. However, this sticker is often not visible after the shelves are installed in a rack.

On a running storage system, you can also find the chassis serial number through NetApp SANtricity System Manager by selecting the Support tab and positioning your cursor over the Support Center tile, as shown in Figure 49.
6.2 License Keys

E-Series storage arrays use two types of license keys. One type of key file is for premium features, and the other type of key file is used to change the storage system feature pack (which changes the host interface protocol).

For the EF600 system, there are currently no premium features. All features are enabled out of the box.

**Note:** The encryption feature is disabled for systems sold in export-limited countries.

The feature pack keys are used to change the protocol on IB HICs between NVMe/IB and NVMe/RoCE and between FC and NVMe/FC on FC HICs. The process to generate a new feature pack key for your storage array is almost the same as the process to generate a premium feature key. The difference is that the 11-digit key activation code for each package is available at no additional cost and is listed in the hardware upgrade instructions per controller type, available on the [E-Series and SANtricity 11 Resources page](#).

The following information is required to generate a feature pack key file:

- 11-digit key activation code
- Array serial number shown in System Manager by selecting Support, then Support Center

Select the feature enable identifier shown in System Manager by selecting Settings > System, and then reference the identifier in the Add-Ons section.

After the feature pack file is downloaded to the host server, click Change Feature Pack, as shown in Figure 50. Follow the prompts, beginning with browsing to the feature pack file, as shown in Figure 51.
**Note:** Changing the feature pack causes the storage array to reboot. The new protocol will be active after the system is back online.

For issues with accessing license key files, open a support ticket with NetApp Support by using the serial number of the registered controller shelf for the associated storage system. This will require a NetApp Support login.
7 Conclusion

NetApp EF600 storage systems provide extreme throughput performance with fast host interfaces and can offer up to 367TB of raw capacity to support fast, large-capacity applications. It is also capable of delivering sub-150μsec response times for critical path transactional environments that require consistently low latency. For high-random IOPS environments, the EF600 supports up to two million 4KB read IOPS. For high-bandwidth workloads, the EF600 supports approximately 12.5GBps cache-mirrored sequential writes and up to 44GBps sequential reads.

With its extreme versatility—including multiple host interface choices, multiple RAID choices, and a range of entry-level-capacity to enterprise-capacity drive choices—the EF600 is a modern, ready-to-work, NVMe all-flash storage system. The addition of NVMe/IB, NVMe/RoCE, and NVMe/FC makes the EF600 a truly new-generation NVMe all-flash array. The EF600 system delivers industry-leading price/performance, excellent interface and configuration flexibility, and the extended RAS value that enterprise customers can trust with their highest-value workloads.

Appendix – Understanding SSD Endurance and Over-Provisioning

This appendix describes how to increase SSD endurance and maximize steady-state write performance for write-intensive workloads by configuring VGs and DDPs to have free capacity. The topics of endurance, over-provisioning, write amplification factor, and workload conditioning will be explored to provide a basis for understanding how leaving free capacity effectively increases the level of over-provisioning in the drives in each group or pool. Increasing over-provisioning can be expected to increase both SSD endurance and maximum sustained write performance, especially for lower-capacity drives.

SSD Endurance

SSD endurance is typically specified in terms of drive writes per day (DWPD), which is just a convenient way to specify an amount of data. The NVMe SSDs used in the EF600 are rated for 1 DWPD. That means that you could nominally write an amount of data equal to the capacity of each SSD once per day without exceeding its rated endurance during the warranty period. Since endurance is a measure of the amount of data that can be written, the rated endurance for a 3.84TB SSD expressed as terabytes written is twice that of a 1.92TB SSD since it has twice the capacity. Similarly, the endurance for a 15.3TB SSD is twice that of a 7.68TB SSD.

There is an endurance limit specified for SSDs because solid-state memory can wear out. The NAND flash memory in an SSD is repeatedly programmed and erased over time as data is written to the drive. NAND flash memory can only be programmed and erased a limited number of times before wearing out, which means that there is an upper limit on how much data can be written to each SSD during its lifetime.

The smallest amount of data that can be written from the perspective of the array (and from the attached hosts) is one logical block, which is 4096 bytes for the NVMe drives used in an EF600. Inside the SSD, the smallest amount of data that can be written is a NAND flash memory page, which may be larger than a logical block. The smallest amount of data that can be erased is a NAND block, which can contain hundreds of pages. Once a page is written, it cannot be overwritten until the entire NAND block is erased. The exact page and NAND block sizes vary between SSD models. In general, the NAND block size increases as NAND flash memory density and capacity increases.

Over-Provisioning

All SSDs have more internal solid-state storage than the amount specified as the usable capacity. The extra capacity is referred to as over-provisioning (OP). The rated endurance is directly related to the amount of over-provisioning, which is expressed as the percentage increase of the usable capacity. OP values of 7%, 28% and 100% typically correspond to rated endurances of 1 DWPD, 3 DWPD and 10
DWPD, respectively. The exact amount of OP required for the rated endurance is an implementation detail, however, and can vary between vendors or between generations of drives.

So, the amount of solid-state storage in a drive that has a stated usable capacity of $U_x$ with 7% OP has internal storage in the amount of $R = U_x + 0.07\times U_x$ or $R = 1.07\times U_x$. If the same drive of raw capacity $R$ were instead configured for an OP of 28%, the usable capacity would be $U_y = (1.07\times U_x)/1.28$. If the drive were configured for an OP of 100%, the usable capacity would be $U_z = (1.07\times U_x)/2$.

As an example, a drive with a stated usable capacity of 3.84TB when configured for 7% OP to support an endurance of 1 DWPD would have a usable capacity of 3.2TB when configured for an OP of 28% to support an endurance of 3 DWPD. If it were configured with an OP of 100% to support 10 DWPD, it would have a usable capacity of 2.1TB.

As the capacity of SSDs have increased, the amount of raw capacity needed to configure a given amount of OP has also increased because OP is specified as the percent of additional memory needed to support a given endurance. For example, an 800GB SSD rated for 3 DWPD needs a raw capacity of approximately 1024GB, or 224GB more than the usable capacity. By comparison, a 3.84TB SSD configured for an endurance of 3 DWPD would require approximately 1.1TB of additional capacity as opposed to only about 270GB of additional capacity to support an endurance of 1 DWPD. The difference in raw capacity required is over 800GB, which is not directly visible to the end user and increases the cost of the drive as a percentage of usable capacity.

**Write Amplification Factor**

SSD endurance is specified as an amount of data that can be written to each drive during its lifetime. It is not really that simple, however, because the endurance rating is based on a random write workload assuming a certain write amplification factor (WAF). Recall that the data can be written to the NAND flash memory with page granularity, but can only be erased as a NAND block, which may contain hundreds of pages. To ensure even wear on all NAND blocks, the SSD performs both garbage collection and wear leveling in the background.

- Garbage collection happens when the contents of a logical block are overwritten with new data. The SSD writes the data to a page that is currently erased. The old data for that logical block are no longer needed and can be discarded. After a large enough percentage of pages in a block no longer contain valid data, the SSD copies pages with valid data into erased pages in another NAND block so that it can erase the entire NAND block.
- Wear leveling happens when a NAND block contains data that is never overwritten, the SSD periodically copy the data to another block so that all blocks can be used (in other words, programmed and erased) evenly throughout the life of the drive.

All of this means that the amount of data written to the NAND flash memory exceeds the amount of data written to the SSD by the array (which is the host, as viewed by the SSD). The ratio of NAND writes to host writes is referred to as the write amplification factor or WAF.

**Note:** In general, increasing the OP lowers the WAF, especially for random write workloads. Lowering the WAF in turn increases endurance and can also increase steady-state performance for write-intensive workloads.

**Steady-State Performance**

The maximum achievable write performance for an SSD eventually reaches a steady-state level. For most workloads, the maximum obtainable write performance can be expected to decrease from the peak values that can be obtained when the drive is mostly erased. As the host continues to write data to the drive, the SSD must perform garbage collection in the background to free up space as logical blocks are overwritten. Over time, the drive must also perform background wear leveling. The maximum obtainable write performance starts to decrease as data is written to the drive but can be expected to stabilize to a
steady-state value for a given workload. When the maximum obtainable performance stabilizes, the drive is said to be conditioned for that workload.

The amount of data that must be written before the maximum write performance stabilizes varies with the workload and the amount of over-provisioning. As a rule, maximum write performance can be expected to stabilize after an amount of data two to three times the capacity of the drive has been written to the drive. There is a correlation between maximum steady state write performance and over-provisioning. As a rule, maximum write performance increases with higher levels of over-provisioning.

**Note:** Write performance for a given workload does not necessarily drop after the SSD has been conditioned to that workload if the write rate is at or below the maximum steady state write performance.

### EF600 Free Capacity Unmap and Over-Provisioning

SANtricity OS automatically sends unmap commands to the free capacity in each SSD volume group or dynamic disk pool. When creating the first volume in an SSD volume group or pool, all usable capacity in the group or pool is unmapped. If a volume in the group or pool is subsequently deleted after creation, the free capacity in the group or pool is unmapped in the background. For dynamic disk pools, the free capacity of drives reserved for preservation capacity is also unmapped in the background.

Unmapped logical blocks in the drive are available for the SSD to use during garbage collection and wear leveling. Leaving free capacity in a group or pool effectively increases the OP of the constituent drives in that group or pool, which can both improve maximum write performance and increase durability for write-intensive workloads.

### Reserving Free Capacity

When creating VGs and DDPs, consider leaving some free capacity in the group or pool rather than allocating all available capacity to volumes. The EF600 automatically unmaps free capacity. Therefore, free capacity effectively increases the OP level for the constituent drives in that group or pool, which can result in lower WAF for both random write and multi-stream sequential write workloads. Lowering the WAF for a given workload inherently increases endurance and can improve steady-state performance for write-intensive workloads, especially for lower capacity drives. With lower capacity drives, the maximum steady-state write performance is expected to be less than half that of the system throughput capability if there is no free space in the group or pool.

The maximum steady-state IOPS and bandwidth capability for each individual SSD in a group or pool increases as free capacity is increased in the group or pool. Equally important, increasing free capacity decreases the WAF for most workloads, increasing SSD endurance. The decrease in WAF should occur for most workloads even if the performance requirements of the workload are significantly below the maximum steady-state values.

Table 20 shows the effective OP for various amounts of free capacity held back as a percentage of the usable capacity of the drive. The usable capacity in a volume group varies considerably with the RAID level and group size, so the free capacity reserved in the volume group should be based on the total capacity of the drive. A holdback of 16.4% equates to an effective OP of 28%, which is the OP level nominally used to configure drives for 3 DWPD endurance.

<table>
<thead>
<tr>
<th>% Holdback</th>
<th>Effective OP</th>
<th>1.92TB SSD</th>
<th>3.84TB SSD</th>
<th>7.68TB SSD</th>
<th>15.3TB SSD</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>7.0%</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>11.5%</td>
<td>71.54</td>
<td>143.08</td>
<td>286.16</td>
<td>572.32</td>
</tr>
<tr>
<td>8</td>
<td>16.3%</td>
<td>143.08</td>
<td>286.16</td>
<td>572.32</td>
<td>1144.63</td>
</tr>
</tbody>
</table>
Where to Find Additional Information

To learn more about the information that is described in this document, review the following documents and websites:


Version History

<table>
<thead>
<tr>
<th>Version</th>
<th>Date</th>
<th>Document Version History</th>
</tr>
</thead>
<tbody>
<tr>
<td>Version 1.0</td>
<td>September 2019</td>
<td>Initial release of EF600 array and SANtricity 11.60</td>
</tr>
<tr>
<td>Version 1.1</td>
<td>June 2020</td>
<td>Updated for SANtricity 11.60.2 release</td>
</tr>
</tbody>
</table>
Refer to the Interoperability Matrix Tool (IMT) on the NetApp Support site to validate that the exact product and feature versions described in this document are supported for your specific environment. The NetApp IMT defines the product components and versions that can be used to construct configurations that are supported by NetApp. Specific results depend on each customer's installation in accordance with published specifications.

Copyright Information

Copyright © 2020 NetApp, Inc. All Rights Reserved. Printed in the U.S. No part of this document covered by copyright may be reproduced in any form or by any means—graphic, electronic, or mechanical, including photocopying, recording, taping, or storage in an electronic retrieval system—without prior written permission of the copyright owner.

Software derived from copyrighted NetApp material is subject to the following license and disclaimer:

THIS SOFTWARE IS PROVIDED BY NETAPP “AS IS” AND WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL NETAPP BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

NetApp reserves the right to change any products described herein at any time, and without notice. NetApp assumes no responsibility or liability arising from the use of products described herein, except as expressly agreed to in writing by NetApp. The use or purchase of this product does not convey a license under any patent rights, trademark rights, or any other intellectual property rights of NetApp.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or pending applications.

Data contained herein pertains to a commercial item (as defined in FAR 2.101) and is proprietary to NetApp, Inc. The U.S. Government has a non-exclusive, non-transferrable, non-sublicensable, worldwide, limited irrevocable license to use the Data only in connection with and in support of the U.S. Government contract under which the Data was delivered. Except as provided herein, the Data may not be used, disclosed, reproduced, modified, performed, or displayed without the prior written approval of NetApp, Inc. United States Government license rights for the Department of Defense are limited to those rights identified in DFARS clause 252.227-7015(b).

Trademark Information

NETAPP, the NETAPP logo, and the marks listed at http://www.netapp.com/TM are trademarks of NetApp, Inc. Other company and product names may be trademarks of their respective owners. TR-4800-0520