Abstract

NetApp® Active IQ® Unified Manager is the most comprehensive product for managing and monitoring NetApp ONTAP® systems. The need to support various installation platforms, infrastructure scalability, and deployment scenarios creates such a complex list of requirements that one configuration might not fit all. This document outlines basic deployment and best practice guidelines for Unified Manager. The document is for users who are already familiar with the fundamentals of NetApp ONTAP and Unified Manager.
TABLE OF CONTENTS

1 Introduction.. 4

2 Architecture... 4
 2.1 Active IQ Unified Manager Architecture .. 4
 2.2 Active IQ Unified Manager Architecture (Older Versions) .. 5

3 Sizing Guidelines... 6
 3.1 Challenges to Providing Scaling Precision ... 6
 3.2 Scale Monitor ... 7
 3.3 Scale Guidance Strategy .. 9
 3.4 Scale Monitor Events ... 11

4 Installation Guidelines ... 12
 4.1 Selecting the Right Platform ... 12
 4.2 Resource Allocation ... 14
 4.3 Planning Your MySQL Space ... 14

5 Unified Manager Backup ... 16
 5.1 Defining a Custom Backup Path .. 17
 5.2 Defining Custom Backup Location .. 17
 5.3 Database Backup Best Practices .. 17
 5.4 Prerequisites for Selecting a Different Backup Location in RHEL/CentOS and Windows 18
 5.5 vApp Backup .. 18

6 WFA Pairing Guidelines .. 18
 6.1 WFA Pairing Best Practice ... 19

7 Deployment Guidelines ... 19

Where to Find Additional Information .. 19
 Unified Manager Videos ... 19
 Technical Reports and Documentation .. 19

Version History .. 20

LIST OF TABLES
Table 1) Configuration recommendation for each Unified Manager Instance ... 9
Table 2) Resource recommendations for Unified Manager 9.7 .. 10
Table 3) Resource recommendations for Unified Manager 9.7 and older versions 10
Table 4) Management Station events ... 11
Table 5) Choosing the right platform .. 13
LIST OF FIGURES

Figure 1) Active IQ Unified Manager Architecture. ...4
Figure 2) Intelligent Provisioning with NSLM Integration. ..5
Figure 3) Active IQ Unified Manager architecture 7.2 through 9.6..6
Figure 4) Management Station Events. ..8
Figure 6) Find All Management Station Events in the Events Management GUI. ...8
Figure 7) Scale Monitor Alerts in Unified Manager 9.5 and Lower Versions...9
Figure 8) Almost Out of Memory Event. ..11
Figure 9) New Event to Measure Database Behavior. ..12
Figure 10) Identifying the right platform. ..14
Figure 11) Specifying MySQL directory path during Windows installation..16
Figure 12) Define the backup path for vApp hosts. ...17
Figure 13) WFA pairing with Unified Manager...18
1 Introduction

NetApp Active IQ Unified Manager (AIQ UM) is the most comprehensive product for managing and monitoring performance, capacity, and health in ONTAP® systems through features like events, alerts, performance troubleshooting, capacity reporting, and more. Starting with Unified Manager 7.2, Unified Manager and Performance Manager are available in a single download and a single server.

Because performance monitoring is now fully integrated into the Unified Manager product, OnCommand Performance Manager (OPM) is no longer available as a separate product. NetApp provides a migration tool to copy the historical performance data from OPM 7.1 to Unified Manager 7.2. For more information, see the technical report Migrating Performance Data to NetApp Active IQ Unified Manager 7.2.

The purpose of this guide is to address many of the design questions you might need to consider when creating an instance of Unified Manager 7.2. If you have a large ONTAP footprint, the proper planning of Unified Manager deployments is essential to help you to scale later.

2 Architecture

2.1 Active IQ Unified Manager Architecture

With the release of Unified Manager 9.7, NetApp has introduced several new capabilities in Unified Manager. You can now use Unified Manager to perform active management and intelligent provisioning of your ONTAP fleet across the datacenter with the GUI or automate with any standard tools by using Unified Manager’s REST APIs. With several HTML5-based dashboards, security conformance, enhanced risk assessment, and analysis backed by Active IQ’s community intelligence and VMware awareness, Unified Manager 9.7 is power packed for the modern data center operations and hybrid environments. Figure 1 shows the various capabilities and third-party integration capabilities you have with Active IQ Unified Manager.

Figure 1) Active IQ Unified Manager architecture.

Intelligent Provisioning with Unified Manager and REST APIs

NetApp Service Level Manager (NSLM) was a standalone product which enabled you to manage your storage infrastructure based on service level objectives (SLOs). NSLM is an automation software that
helps you assign performance service levels to your workloads and allows storage consumption against these performance levels. This results in intelligent provisioning and workload management because storage can be provisioned by users without requiring detailed knowledge of the underlying storage. NSLM is also equipped with SLO-based APIs to provision and monitor storage and platform-specific device APIs for storage management in a data center.

With the convergence of Unified Manager and NSLM in Unified Manager 9.7, each Unified Manager instance has provisioning capabilities along with monitoring. It is a truly unified product with a seamless transition to the new experience and revamped navigation.

Figure 2) Intelligent provisioning with NSLM integration.

2.2 Active IQ Unified Manager Architecture (Older Versions)

When using Unified Manager, health and performance data is collected into a single unified MySQL database, and health and performance events can be configured from the same interface. Also, you can add user-defined performance alerts from the Unified Manager Alert tab. You only need to maintain one SSL certificate for connecting to ONTAP clusters.

At a high level, Unified Manager software consists of the following four main components:

- **Acquisition unit.** Collects and normalizes configuration, capacity, and performance statistics from ONTAP systems and sends each collected information set to the OCIE server.
- **OCIE server.** Writes the collected ONTAP information into the database. Also provides public interfaces to retrieve the data through EJBs (Enterprise JavaBeans) and sends notifications to listening parties when collections have completed.
- **Unified Manager Health and Performance.** These components heuristically monitor and analyze all the capacity, protection, and performance-based features of the monitored ONTAP systems and provide the user with visible events, alerts, and reports.
- **Unified Manager UI.** This component presents a friendly, easy-to-use interface for all the features of Unified Manager and the ONTAP systems.
3 Sizing Guidelines

There is no one-size-fits-all option for planning compute resources for Unified Manager because every environment is different. Various factors determine resource requirements for each Unified Manager instance. Customers use Unified Manager for various purposes; some people only use the alerting and event functionality, while some use it for operational reporting. Some advanced customers use it for end-to-end monitoring and management of NetApp resources with various integrated solutions, such as Workflow Automation (WFA).

3.1 Challenges to Providing Scaling Precision

Unified Manager is primarily a monitoring solution. Many resource requirements depend on various factors, some of which are under the control of Unified Manager, and some of which are beyond Unified Manager’s scope. This section describes the challenges to providing scale precision.

Note: The items in red are beyond the control of Unified Manager for discovery.

- The number of clusters per Unified Manager instance
- The number of nodes per cluster
- The number of each type of storage object (physical or logical) in a cluster
- The number of concurrent Unified Manager users
- The web pages that each Unified Manager user requests
- The external load (for example, WFA)
- Reports generated (on demand or scheduled)
- The ONTAP version for objects managed and collection method
- The time between performance collection periods (5 min to 15 min)
- Network issues or latency
- The frequency of object configuration changes on the cluster

In addition, load on the cluster also increases the ZAPI response time. This is ONTAP related, so it cannot be discovered by Unified Manager.
Virtual Application (vApp) Configuration and Run Time

Note: The items in red cannot be discovered by Unified Manager and are thus beyond its control.

- The amount of actual RAM memory that VMware provides
- The number of CPU cycles provided by VMware
- If the memory and CPU resources are reserved or shared
- Competition from other workloads in VMware
- The underlying storage technology in VMware
- Host OS performance
- Any hardware failures
- Underlying Java Virtual Machine (JVM) used by Unified Manager
- Class libraries and memory efficiency
- Garbage collector behavior with collection times from 20 second to 10 minutes

These factors explain why precision in Unified Manager scaling is challenging; there are so many attributes that are beyond the scope of the Unified Manager instance. The following general sizing rules might help you with your decisions.

Sizing Rules

The built-in Scale Monitor feature indicates when to increase resources or stop adding clusters to the Unified Manager instance. The general rule for sizing is to add additional resources (disk, memory, and/or CPU) to your required or planned capacity. The following pointers might help you with your decision:

- Always add additional resources to your planned capacity to allow for growth. This buffer depends on how quickly your environment will grow. Plan to provision least 10% to 20% above your requirements.
- It’s always good to oversize, because:
 - Users often don’t know their peak loads in advance.
 - Even if you are confident of your Unified Manager capacity, your environment might grow and need more resources.
- Never undersize your disk and memory requirements, always oversize.
- When possible, reserve resources for Unified Manager versus sharing them in virtual environments.

The additional resources required are addressed with Scale Monitor alerts, as described in the next section.

3.2 Scale Monitor

Unified Manager has a built-in Scale Monitor feature that tracks disk and memory usage. This feature can then provide guidance in scenarios where increasing these system resources allows you to scale your Unified Manager instance.

Scale Monitor in Unified Manager 9.7

Starting with Unified Manager 9.7, scale monitor alerts are called as Management Station events and are available in the Event Management view. You can filter all Management Station events to match by using the Source Type as shown below. For details, please visit the Online Help Pages available with your Unified Manager instance.

The events are available in the notification bell found in the top right-hand corner of the GUI.
To view all the Management Station events, navigate to Event Management, and apply filter mapping with the Source Type to search for the Management Station.

Note: Scale Monitor checks the amount of memory on the machine and partitions it across MySQL and the two Java processes. When users add more memory to the machine, Unified Manager uses it without any other changes on their part.

Scale Monitor in Unified Manager Versions Prior to 9.6

Scale Monitor offers predefined alerts for monitoring disk and memory, which aids in scaling. The alerts are displayed separately in the top left corner of the screen. Warning events also display a possible remediation step.
3.3 Scale Guidance Strategy

In the case of larger ONTAP environments, it might take additional planning to determine the appropriate resources for your Unified Manager instance. This section describes some of the guidelines that you can use to plan and deploy your own Unified Manager instance.

As general rules of thumb, consider the following scale strategy for your Unified Manager instance:

- Always overprovision.
- When Unified Manager starts monitoring beyond a 48-node count, rely on Scale Monitor (Management Station) alerts.
- When possible, reserve resources for Unified Manager versus sharing them in virtual environments.

Minimum Resource Requirements with Unified Manager

To accommodate different configuration and deployment sizes, Unified Manager has no hard limit on the space and memory reservations from version 7.2. This is particularly helpful for customers with smaller ONTAP footprints and those who have an instance deployed on a host with a very small configuration. However, for Unified Manager instances running as a virtualized instance with sizable footprints, NetApp recommends reserving resources (CPU, memory) for best performance, although this is optional.

Reserving memory eliminates ballooning, swapping on the host, and ensures Unified Manager runs on physical memory. Users can start with the configurations listed in Table 1.

Table 1) Configuration recommendation for each Unified Manager Instance.

<table>
<thead>
<tr>
<th>Platform</th>
<th>Memory (GB)</th>
<th>CPU</th>
<th>Disk Space (GB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>vApp</td>
<td>12</td>
<td>4 vCPUs</td>
<td>400</td>
</tr>
<tr>
<td>Windows/CentOS/Red Hat</td>
<td>12</td>
<td>4</td>
<td>400</td>
</tr>
</tbody>
</table>
For enterprise customers with scaled environments, you can use the following resource recommendations for planning your Unified Manager instance. These recommendations are best practices; they are not mandatory.

Unified Manager 9.7 and Higher Versions

NetApp has made several improvements in the 9.7 release that have optimized scale numbers with a view to increase the scale numbers further in future releases. If you have a significant number of ONTAP instances managed by a single Unified Manager instance, consider investing in the Unified Manager upgrade process. Based on performance benchmarking and early adopters experience with Unified Manager 9.7, customers can now scale up to 150 nodes, as shown in Table 2. If your node count is greater than 150, contact your NetApp account team so that they can help coordinate a review of your environment requirements.

Note: Backup space requirements, such as provisioning three times the space for the /data directory, remain unchanged.

Table 2) Resource recommendations for Unified Manager 9.7.

<table>
<thead>
<tr>
<th>Node Count</th>
<th>Memory (GB)</th>
<th>Disk Space (GB)</th>
<th>CPU</th>
<th>Backup Space (GB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up to 48</td>
<td>12</td>
<td>400</td>
<td>4–8</td>
<td>Three times /data</td>
</tr>
<tr>
<td>49–72</td>
<td>60</td>
<td>685</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>72–150</td>
<td>146</td>
<td>1600</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>150+</td>
<td>Contact account team</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: This is the first release of Unified Manager in which we have introduced the VMware awareness capability. 4,700 VMs have been tested in a standard Unified Manager 9.7P1 configuration.

Unified Manager 9.6 and Older Versions

Table 3) Resource recommendations for Unified Manager 9.6 and older versions.

<table>
<thead>
<tr>
<th>Node Count</th>
<th>Memory (GB)</th>
<th>Disk Space (GB)</th>
<th>Cores</th>
<th>Backup Space (GB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>49–72</td>
<td>Rely on Scale Monitor to tell you when AIQUM requires more resources.</td>
<td>Rely on Scale Monitor to tell you when AIQUM requires more resources.</td>
<td>12</td>
<td>Three times MySQL DB space</td>
</tr>
</tbody>
</table>
| 72+ | Upgrade to Unified Manager 9.7 (recommended) or:
 • Follow Scale Monitor guidance (or)
 • Deploy multiple instances | | | |

For example, if the MySQL directory (/opt/netapp/data) space is set to 150GB, the backup space should be set to 450GB (three times the MySQL data space).
Notes:

- If you plan to create Unified Manager backups, configure your backup destination to have three times the consumed primary data (/opt/netapp/data) space.
- You can mount a LUN or NFS share on the backup path. This creates two advantages:
 - The DB has more space to accommodate growth.
 - Because backup files are hosted on a storage server, they are safe from accidental VM outage.
- In general, 5GB of disk space is required per node for performance data retention. This is a general observation, and actual requirements can vary.

If you need an environment supporting over 72 nodes, please upgrade to Unified Manager 9.7P1 or higher to take advantage of additional features and scale improvements.

See the a KB article that provides step-by-step guidance on the process for splitting the Unified Manager database for load-balancing purposes.

3.4 Scale Monitor Events

Scale Monitor events can be a useful mechanism for addressing many scale issues. Table 4 lists the Management Station events that are currently available.

Table 4) Management Station events.

<table>
<thead>
<tr>
<th>Event Name</th>
<th>Impact Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unified Manager Server Disk Space Nearly Full</td>
<td>Risk</td>
</tr>
<tr>
<td>Unified Manager Server Disk Space Full</td>
<td>Incident</td>
</tr>
<tr>
<td>Unified Manager Server Low on Memory</td>
<td>Risk</td>
</tr>
<tr>
<td>Unified Manager Server Almost Out of Memory</td>
<td>Incident</td>
</tr>
<tr>
<td>MySQL Log File Size Increased; Restart Required</td>
<td>Risk</td>
</tr>
</tbody>
</table>

Each event provides a recommendation with guidance on the implementation plan.

Figures 7) Almost Out of Memory event.

Enhancements with Active IQ Unified Manager 9.7P1

Starting with 9.7P1, Unified Manager monitors how frequently MySQL writes to disk and tunes it to optimize writes. Scale Monitor makes these changes automatically and creates a new event in the notification bell when a reboot is required. The new event is shown in Figure 8.
4 Installation Guidelines

Organizations have requirements for certifying software versions and security updates in their environment. These requirements might force you to decide on a platform to host your software. Before you start a fresh installation of Unified Manager 7.2 or later, you must decide on the platform (vApp, Red Hat Enterprise Linux, CentOS, or Windows) that best suits your environment.

4.1 Selecting the Right Platform

Organizations have different security procedures, patching policies, and regulations that limit the way a product is installed. With Unified Manager, you have the flexibility to install your Unified Manager instance in the platform that best suits your organizational needs. Although there is no significant performance, operational, or functional differences between the three platforms, you should understand how your platform selection affects your operations:

With the vApp distribution, the underlying operating system is locked down behind a network firewall. There is no user access to the file system or to the operating system components. Any updates to the software must be applied through a Unified Manager patch downloaded from the NetApp Support site. Scale might be limited by VMWare’s CPU and RAM allocation capability. vApp is an excellent choice for customers who have less need for independent verification and control of software components. Deployments are up and running in a matter of minutes.

With the Red Hat Enterprise Linux and CentOS distribution, the user retains control of the operating system. Any required agents (such as backup, auditing, and so on) can be installed, and the user is free to choose the patch levels for third-party software packages used by Unified Manager, such as Java and MySQL. Users can also patch the server on their schedule. Additional security hardening is possible if it doesn’t interfere with required network connections. This is a great option for customers who have very specific corporate security requirements.
With the Windows distribution, customers fully control the Windows server and the environment. They can patch the server and choose to change the versions of third-party components. However, the process is not as simple as on Linux.

Use Table 5 when deciding which platform to select.

Table 5) Choosing the right platform.

<table>
<thead>
<tr>
<th>Functional Requirement</th>
<th>vApp</th>
<th>Windows (Guest OS)</th>
<th>Red Hat / CentOS (Guest OS)</th>
<th>Windows (Physical)</th>
<th>Red Hat (Physical)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Platform hosting Unified Manager requires regular patching in your environment.</td>
<td>✗</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Platform hosting Unified Manager requires OS hardening.</td>
<td>✗</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Unified Manager requires a certain software component version.</td>
<td>✗</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>For example, MySQL version 5.7.23 is required but the built-in package in vApp (OVA) is</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>currently 5.7.17.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unified Manager instance must scale up its resources (memory, disk space) to satisfy</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>new nodes or clusters added.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>You have delegated management roles in your environment for operations and administrative roles</td>
<td>✗</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>You expect to have a higher node count, requiring you to scale your Unified Manager</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>instance vertically.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*You cannot auto-scale resources in physical servers directly. You can add resources (memory and disk) only during downtime, provided that your hardware supports extra DIMM and disk slots.

Alternatively, you can use the logic shown in Figure 9 to identify the right platform.
4.2 Resource Allocation

With Unified Manager 7.2, there are no reservations on CPU, memory, and disk requirements, which means that the installation is not going to fail because it does not meet the 150GB disk space recommendation. Follow the sizing recommendations in Section 3.3.

4.3 Planning Your MySQL Space

With increasing business needs, your Unified Manager instance needs to scale vertically to monitor and manage additional storage infrastructure. Increasing object counts result in additional space requirements in the /opt/netapp/data space, requiring a flexible /opt/netapp/data partition that can grow with
new resource requirements. You might also have to plan additional space for backups, because the partition is housed under `/opt/netapp/data`. For these reasons, your `/opt/netapp/data` space must be flexible to allow expansion. NetApp recommends the following:

- For RHEL and Windows installations: `/opt/netapp/data` mounted from a LUN for physical installations.
- For vApp installations: Rely on the datastore where MySQL database is hosted.

 Note: For large MySQL databases, you can keep the support bundles in a different location than `/opt/netapp/data`. This prevents unnecessary space consumption in the `/opt/netapp/data` space.

To enable your MySQL DB data (`/opt/netapp/data`) to auto-expand, NetApp recommends having a volume manager manage your LUN mount. Requirements for the different platforms are discussed in the rest of this section.

Red Hat Enterprise Linux or CentOS

NetApp recommends mounting `/opt/netapp/data` from a LUN mount for Unified Manager and to use a volume manager to mount it as a filesystem in your host. This gives you the flexibility of adding LUNs for additional disk space while keeping the `/opt/netapp/data` mount constant. You can add multiple LUNs under the same mount point with the help of logical expansion.

If you need to increase `/opt/netapp/data` for an existing Unified Manager instance that is installed on `/opt/netapp/data` mounted locally, complete the following steps:

1. Install an iSCSI adapter in your Linux server.
2. Create a new LUN and map it to the Unified Manager server.
3. Use LVM or a similar volume manager to mount the LUN.
4. Shut down the Unified Manager instance and then copy the entire contents of `/opt/netapp/data` into the new mountpoint.
5. After copying is completed, rename the new mountpoint as `/opt/netapp/data` and bring up the Unified Manager services again.

Plan to mount `/opt/netapp/data` from a separate LUN, and mount it with a volume manager. This gives you the flexibility of granting additional `/opt/netapp/data` space by using volume managers like Linux-native LVM. You can add multiple LUNs under the same mount point with the help of logical expansion.

Windows

Always put your Unified Manager data directory in a non-system drive because you cannot expand your system drive. If your system drive is the C drive, do not use the C drive for MySQL data. NetApp recommends mounting a LUN for placing your MySQL data and making the disk dynamic for future expansions as the need arises.

Alternatively, you can have a volume manager offer a non-system drive; you can always add space to this drive for future expansion.

During installation, you can specify where you want to keep MySQL data, as shown in Figure 10.
Virtual Appliances

vApp deployment follows a simple procedure. The underlying datastore helps in auto-expansion; you can always expand the current installation space from the underlying datastore.

To expand the /data space, you must first expand the hard disk space at the virtual machine’s resource tab and then expand the actual space of the MySQL data partition from the vApp maintenance console.

Note: The underlying datastore should have the extra space required for you to provision the VM in question.

5 Unified Manager Backup

Unified Manager 7.2 and later collects and maintains performance, capacity, and health data in a single MySQL database. When a full backup is triggered, a temporary dump of the MySQL database is created in the backup directory, requiring additional temporary space for every iteration of backup. For each incremental backup, a separate backup file is generated in /opt/netapp/data/ocum-backup/database-dumps-repo. Therefore, NetApp recommends configuring the backup space to be three times the size of the MySQL database.

This configuration comes with some additional cost to maintain the temporary space inside the /opt/netapp/data space. You should plan to have the backup directory mounted from low-cost storage and from an independent network location for two reasons:

- Having your backups in a different location helps with the recovery of your database when the primary location is unavailable. The primary location for each install platform is different:
 - vApp: /data/ocum-backup/
 - RHEL and CentOS: /opt/netapp/data/ocum-backup/
 - Windows: Available under C:\\ProgramData\\
- The space requirement for backups is three times the size of the MySQL database. Therefore, it is best to store backup data in a different mount point.
5.1 Defining a Custom Backup Path

To store your backup data in a different location, define the network path in the backup settings, as shown in Figure 11.

Figure 11) Define the backup path for vApp hosts.

Note: The path shown in Figure 11 is different for RHEL, CentOS, and Windows environments.

5.2 Defining Custom Backup Location

RHEL and CentOS

For RHEL and CentOS, NetApp recommends creating a different backup destination for scaled environments. This allows you to scale your backup as the database grows. For these reasons, you can consider one of the following options:

- Mount your backup on a dedicated mount point like /mnt/backup.
- Create a symlink from <absolute path> to /mnt/backup.

Note: Mounting /mnt/backup on NFS is supported, provided that the selinux context is set to mysqld_db_t.

Windows Install

For Windows environments, NetApp recommends creating a different drive for backups.

5.3 Database Backup Best Practices

There are subtle changes and enhancements in the Unified Manager backup behavior in version 9.7 compared to 9.6 and earlier versions.

For additional information and best practices for these versions, see the following KB articles:

- **KB 1087351**: Incremental backup in Unified Manager.
- **KB 1103608**: Full backup and incremental backup schedules in Unified Manager 9.7 and later versions.
- **KB 1103565**: Restore an Active IQ Unified Manager 9.x application backup

For older versions, see the following KB articles:

- **KB 1087704**: Planning an incremental backup chain within Unified Manager versions 7.2 through 9.6.
• **KB 1089470**: Unified Manager backup and restore best practices.
• **KB 1087324**: Collecting an OnCommand Unified Manager backup till 9.5.

5.4 Prerequisites for Selecting a Different Backup Location in RHEL/CentOS and Windows

For the custom backup location to work, you must reassign ownership of a new backup path to `User:jboss` and `Group:jboss`. For example, in a Red Hat installation, the custom backup directory should have the `use group` permission set to `jboss:jboss`.

Note: For vApp instances, the backup recommendations are different, as described in Section 5.5.

5.5 vApp Backup

For Unified Manager instances deployed on the vApp instance type, you cannot move data out of the vApp instance. Therefore, NetApp recommends only taking backups with VMware-consistent snapshots.

vApp Backup Procedure

For Unified Manager vApp deployments, NetApp recommends the following backup procedure:

1. Create a VMware-consistent snapshot.

 Note: You cannot move data out of the vApp instance. Taking VMware-consistent backup snapshots is the best way to maintain backups for longer retention periods.

2. For longer retention, take a backup of the VMware snapshot with your vendor-specific backup solution.

6 WFA Pairing Guidelines

You can pair a Workflow Automation instance with a Unified Manager instance as the data source for active management of your protection relationships. By design, the Workflow Automation and Unified Manager instances must be monitoring source and destination clusters involved in protection relationships for active management.

Figure 12) WFA pairing with Unified Manager.

Note: Please use the NetApp IMT Matrix link to find versions of WFA compatible with Unified Manager.
6.1 WFA Pairing Best Practice

As per the best practices detailed under Section 3.3, Unified Manager must be split into two when the instance has more than 72 ONTAP nodes to monitor. This would ideally mean that the Workflow Automation instance now needs to monitor two or more Unified Manager instances as data sources.

In any scenario, NetApp recommends pairing each Workflow Automation instance with Unified Manager so that each WFA instance has access to source and destination clusters in the protection relationship. In addition, each Unified Manager instance acts as a data source.

WFA needs access to source and destination clusters; active management is required on both sides. To find the latest compatibility information for Unified Manager versions with respective WFA instances, please review the NetApp Interoperability Matrix.

7 Deployment Guidelines

Enterprises usually deploy multiple management servers to manage and monitor their data centers. With Unified Manager, you only need one system to manage, provision, monitor, automate, alert, and report on the health and performance metrics of your NetApp systems. If your goal is to monitor all ONTAP resources in every data center with a single Unified Manager instance, you should consider a dedicated management network between sites to make sure that polling updates can be completed without delay. This approach might require consultation with your network experts.

Where to Find Additional Information

To learn more about the information that is described in this document, review the following documents and/or websites:

Unified Manager Videos
- Unified Manager 9.7 overview video
- Unified Manager 9.6 overview video
- Unified Manager video channel link
 https://www.youtube.com/playlist?list=PLdXl3bZJfEw7mp3jFSg0Ijgo3oeDQRY-GI

Technical Reports and Documentation
- Migrating Performance Data from Performance Manager 7.1 to Unified Manager 7.2
- Active IQ Unified Manager Reporting for NetApp ONTAP
- Active IQ Unified Manager Schemas Explained
- Active IQ Unified Manager Documentation
Version History

<table>
<thead>
<tr>
<th>Version</th>
<th>Date</th>
<th>Author</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>17th Aug 2017</td>
<td>Dhiman Chakraborty</td>
<td>Added best practices for Installation guidelines, sizing, backup, and deployment scenarios for Unified Manager 7.2.</td>
</tr>
</tbody>
</table>
| 1.1 | 18th Dec 2018 | Dhiman Chakraborty | • Added more granular details to scaling guidelines, including case studies
 • Added WFA pairing guidelines |
| 1.2 | July 2020 | Dhiman Chakraborty | • Added optional resource requirements for scaled environments
 • Added additional information for Unified Manager instance versions <= 9.6
 • Added scale enhancements with Unified Manager 9.7
 • Added best practices for Unified Manager 9.7 and lower versions
 • Added changes and enhancements done around Unified Manager 9.7 DB backup and restores |
Refer to the Interoperability Matrix Tool (IMT) on the NetApp Support site to validate that the exact product and feature versions described in this document are supported for your specific environment. The NetApp IMT defines the product components and versions that can be used to construct configurations that are supported by NetApp. Specific results depend on each customer's installation in accordance with published specifications.

Copyright Information

Copyright © 2020 NetApp, Inc. All rights reserved. Printed in the U.S. No part of this document covered by copyright may be reproduced in any form or by any means—graphic, electronic, or mechanical, including photocopying, recording, taping, or storage in an electronic retrieval system—without prior written permission of the copyright owner.

Software derived from copyrighted NetApp material is subject to the following license and disclaimer:

THIS SOFTWARE IS PROVIDED BY NETAPP “AS IS” AND WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL NETAPP BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

NetApp reserves the right to change any products described herein at any time, and without notice. NetApp assumes no responsibility or liability arising from the use of products described herein, except as expressly agreed to in writing by NetApp. The use or purchase of this product does not convey a license under any patent rights, trademark rights, or any other intellectual property rights of NetApp.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or pending applications.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.277-7103 (October 1988) and FAR 52-227-19 (June 1987).

Trademark Information

NETAPP, the NETAPP logo, and the marks listed at http://www.netapp.com/TM are trademarks of NetApp, Inc. Other company and product names may be trademarks of their respective owners.