Abstract
This technical report introduces NetApp® ONTAP® All SAN Array systems and covers implementation and best practices recommendations for always-available business-critical SAN configurations. This version of the technical report corresponds to ONTAP 9.7.
TABLE OF CONTENTS

1 **ONTAP All SAN Array Systems Introduction** .. 4
2 **ONTAP All SAN Array Systems Overview** .. 4
3 **Introducing ONTAP All SAN Arrays** ... 5
4 **ASA Compatibility Guidelines** .. 6
 4.1 ASA Commitments and Service-Level Objectives .. 7
5 **ASA Configuration Requirements** ... 7
 5.1 Required Hardware and Software Components for ASA Configurations 7
 5.2 NetApp Tools for ASA .. 8
 5.3 Active IQ OneCollect Data Collection Tool .. 9
 5.4 OnCommand Insight .. 9
 5.5 Active IQ Unified Manager ... 10
 5.6 SAN Environmental Requirements ... 11
 5.7 Hardware Configuration ... 11
 5.8 Storage Controllers .. 11
 5.9 Storage Media: NetApp AFF .. 11
 5.10 Steady-State Storage Utilization .. 12
 5.11 Software Configuration ... 12
 5.12 Aggregate Full and Nearly Full Thresholds .. 13
 5.13 Host OS Configuration and Settings ... 13
 5.14 ASA Specific Limits ... 14
 5.15 Protocol Support .. 14
 5.16 Snapshot Scheduling and Policy ... 14
 5.17 Thin Provisioning ... 15
 5.18 LUN Space Allocation ... 15
 5.19 Space Reclamation (T10 hole-punching/unmap) ... 15
 5.20 Validate the ASA Configuration ... 15
6 **Performance Capacity, CPU Utilization, Storage Utilization, and Performance Capacity Planning** ... 17
7 **ASA Service Offering Lifecycle** .. 17
 7.1 Size an ASA Cluster ... 17
 7.2 Initial Setup and Prevalidation ... 17
 7.3 Initial Hardware Setup Checklist .. 17
 7.4 Initial Hardware Setup Validation .. 18
LIST OF TABLES
Table 1) ONAP ASA-qualified controllers. ... 8
Table 2) ONTAP ASA cluster limits. .. 11
Table 3) AFF versus ASA maximums. ... 14
Table 4) Configuration checks performed by Active IQ Config Advisor. 16
Table 5) Hardware setup checklist. .. 17
Table 6) Hardware checklist validation methods. .. 18
Table 7) ASA configuration tools. .. 18
Table 8) OnCommand Insight per-application reports. ... 19
Table 9) OnCommand Insight storage environment reports. 19
Table 10) Pre-deployment validation task checklist. .. 19
Table 11) Application validation test items. .. 20

LIST OF FIGURES
Figure 1) Unified ONTAP paths .. 5
Figure 2) NetApp AFF A700 ASA active-active pathing. 6
Figure 3) NetApp Interoperability Matrix Tool search results example. 8
Figure 4) Active IQ OneCollect IMT advisor. .. 9
Figure 5) OnCommand Insight storage dashboard. ... 10
Figure 6) Active IQ Unified Manager. ... 11
Figure 7) Host Utilities downloads. .. 13
Figure 8) Use ONTAP System Manager to manage snapshot policies. 15
Figure 9) Config Advisor with Managed ONTAP SAN plug-in. 16
Figure 10) Configuration verification by Config Advisor with Managed ONTAP SAN plug-in. 16
1 ONTAP All SAN Array Systems Introduction

NetApp® All SAN Array (ASA) systems are built on NetApp AFF systems, which deliver industry-leading performance and reliability. AFF systems provide an enterprise-class SAN solution for customers who want to consolidate and to share storage resources for multiple workloads.

AFF SAN systems deliver:
- Industry-leading >99.9999% availability
- Massive scale clusters, which scale both up and out
- The best enterprise performance in the industry (based on audited SPC-1 results)
- Industry-leading storage efficiency
- Among the most complete cloud-enabled cloud connectivity available
- Cost-effective seamless data protection.

NetApp ASA systems build on the all-flash system to deliver continuous SAN availability for enterprises that run mission-critical applications. These systems provide uninterrupted access to data during a planned or unplanned storage failover and deliver streamlined implementation, configuration, and management through a solution that’s dedicated only to running tier 1 SAN workloads.

NetApp recommends ASA configurations when your requirements include:
- Mission-critical workloads such as databases that must have symmetric active-active paths from hosts to storage. All paths between the host and storage are active and optimized across high-availability (HA) partners in this design.
- Preference for a dedicated system to isolate some or all SAN workloads from all others.

AFF systems remain the preferred choice for customers who:
- Need to scale out SAN clusters to up to 12 nodes.
- Need asymmetric access to storage from hosts that are matched with the application requirement.
- Prefer a cluster that supports unified protocols and mixed NAS and SAN workloads.

2 ONTAP All SAN Array Systems Overview

This document is a detailed guide for storage architects who intend to run business-critical tier 1 workloads on NetApp ONTAP® All SAN Arrays. It details an ASA storage configuration that has been tested by NetApp to validate its ability to provide consistent low-latency performance, high throughput, uninterrupted availability, and resiliency. It also discusses best practices for configuring, installing, validating, deploying, and monitoring tier 1 modern SAN storage environments.

This document and its prescriptions are the product of extensive performance testing to identify and to qualify a baseline configuration for consistent performance. It describes this configuration and makes conservative recommendations that are designed to optimize consistent performance. The All SAN Array systems were designed to eliminate All Paths Down (APD) client disruptions that result from a storage failover and to eliminate variability in storage latency and performance, even during storage failover transitions. ASA systems offer uninterrupted availability while maintaining the industry-leading performance of ONTAP. And by concentrating on SAN protocols and features and by excluding NAS protocols and NAS-only features, they also reduce complexity.

Every organization has its own preferences for allocating and for clustering workloads, and for segregating or for integrating their SAN and NAS estates. There’s no one best solution; it depends entirely on each company’s business objectives, skillset, and technology roadmap. This report presents requirements and recommendations that will enable your IT organization to build systems that maximize
performance while maintaining consistent low-latency operations, even during storage disruptions like with controller takeovers and givebacks.

The ASA configuration is optimized for symmetric active-active access and for consistent high performance with low latency. For information about NetApp AFF top-end performance, review the Storage Performance Council’s SPC-1 results.

This document describes guidelines and requirements that are consistent with ONTAP 9.7. The guidelines, requirements, and sample results that are enumerated in this document are all products of extensive and continuous testing by NetApp’s workload and performance characterization teams.

Note: In this technical report, we use the term “tier 1” to refer to mission-critical workloads that can’t accept any loss of access to data. Some use the term “tier 0” to describe these same critical workloads.

3 Introducing ONTAP All SAN Arrays

Before the release of NetApp ONTAP 9.7, all ONTAP controllers featured the architecture that is shown in Figure 1. This architecture advertised routes directly to the controller that hosted the LUN as active-optimized (AO) paths, with all other paths (indirect paths) advertised as active-non-optimized (ANO) paths. Active non-optimized paths are not preferred and are not used unless no active optimized paths exist.

Figure 1) Unified ONTAP paths.

With ONTAP 9.7, NetApp introduced AFF All SAN Array (ASA) systems, which feature symmetric active-active topology, as shown in Figure 2. The All SAN Array supports SAN (block protocols) only and is built on a single HA pair. It currently supports FC and iSCSI protocols, and support for NVMe protocols and larger clusters are expected in later releases.

The defining features of All SAN Array systems include:

• Symmetric active-active operations, which means that all paths are active “preferred” paths to all LUNs. ASA advertises all paths as active-optimized (AO), which means that there are always active
paths to all LUNs, even if a storage failover (SFO, also called a takeover or giveback) occurs. The practical effect is that hosts always have active paths and don’t need to query for new paths if an SFO occurs. This feature reduces the impact of an SFO to times that match those on frame-style arrays. Unified clusters advertise both AO and active-non-optimized (ANO) paths.

Note: Hosts that connect to a unified cluster see both AO paths (preferred) and ANO paths (not preferred). If the host loses all AO paths and doesn’t receive updates that advertise new AO paths, it changes the ANO paths that it still has to a LUN to AO or preferred paths. However, this process can take some time for the host to make those adjustments to its storage map.

- A SAN-only experience that’s simplified by the absence of any variables and options that are related to NAS (file) protocols. This feature reduces the skillset that you need to configure, to provision, and to manage the ASA.
- Support in ONTAP 9.7, which also includes a complete streamlined ONTAP System Manager (formerly OnCommand® System Manager) GUI. All aspects of provisioning, configuring, and managing of ONTAP SANs have been significantly simplified.

Figure 2 NetApp AFF A700 ASA active-active pathing.

4 **ASA Compatibility Guidelines**

An ASA that’s provisioned to serve business-critical applications can grow with the data storage requirements of your applications. However, you should determine its initial size and configuration in accordance with NetApp’s and the application publisher’s best practices recommendations.

Applications and storage requirements that fit the following guidelines are an excellent fit for All SAN Arrays running current versions of NetApp ONTAP:

- Application architects should consider ONTAP ASA for workloads in which continuous availability and consistent low-latency performance are more important than attaining the maximum possible steady-state throughput. For a discussion about performance optimization and consistent low latency, review the section titled Steady-State Storage Utilization of this document.
The ASA symmetric active-active architecture neutralizes the impact of planned and unplanned storage failovers or other component failures. In particular, because of the symmetric access that ASA provides to all LUNs, even with a path, fabric, network, or other failure, a well-designed and managed ASA still provides continuous, consistent, low-latency data access.

All application components in the environment must be matched against a qualified configuration that’s listed in the NetApp Interoperability Matrix Tool.

4.1 ASA Commitments and Service-Level Objectives

ASA service-level objectives (SLOs) are geared toward reducing failover times to an absolute minimum. By changing the ONTAP block architecture to “all paths active” and by using all controllers, ASA can offer symmetric active-active access to data with no client disruptions from All Paths Down (APD). ASA also provides virtually instantaneous and nondisruptive failovers.

When comparing recovery times, measurement protocols matter. NetApp testing focuses on I/O resume times from the host’s point of view (I/O resume time, or IORT). It is inadequate to measure recovery time by measuring transition times on the partner node. To really quantify the impact and disruption that an SFO causes, you must measure I/O resume time at the operating system (OS) or application level.

With ASA symmetric paths, we found no outages when storage failovers occurred, because hosts always have active paths to the LUNs to which they read and write data. With non-ASAs, testing showed variations in different host OS I/O stacks. The length of those disruption windows varied based on the OS, applications, and specific OS or application settings.

In fact, takeover and outage windows are primarily affected by the host OS. The takeover and pathing performance of many OSs can be improved to more quickly react to a loss of active paths by adjusting host IO timeout thresholds, most of these tweaks have been added to OS defaults on the most modern versions of those OS’s. You can discover and review many of these configuration tweaks by reviewing the host utilities documentation associated with the OS you are interested in. To discover factors that contribute to OS initiator stack latency, NetApp interoperability teams are continuously studying IORT on host OSs and applications. These teams work with all major OS publishers to reduce or to remove latency and to improve error recovery.

5 ASA Configuration Requirements

This section details the requirements to implement and to maintain an ASA configuration. To validate an ASA configuration, you must fulfill the following requirements when you provision storage for applications.

You can check the configuration requirements and maximums by downloading and running NetApp Active IQ® Config Advisor. To confirm that the storage system continues to conform to ASA configuration requirements, you should run Config Advisor after initial setup and provisioning and whenever you make significant changes to the configuration and workloads. To maintain consistent performance and to meet storage SLOs, if Active IQ Config Advisor discovers any inconsistencies with the baseline configuration, you must remediate them. Config Advisor queries the configuration and maximums and identifies any nonconforming items so that you can remediate them to maintain the rapid failover times that are critical for ASA performance. The exception report also points to a NetApp Knowledgebase article that identifies all the configuration items and explains the impact of exceeding those configurations.

If NetApp AutoSupport® monitoring is configured along with Config Advisor, then the same checks are run against the collected AutoSupport data on at least a weekly basis. Those checks also generate an alert that identifies any exceptions and points to the same Knowledgebase article that lists configuration items and the impact of breaching those limits.

5.1 Required Hardware and Software Components for ASA Configurations

All ASA configurations have the following mandatory components:
- An AFF ASA HA pair (Table 1 shows current ASA-supported controllers)
- A qualified configuration, as confirmed by the Interoperability Matrix Tool (IMT)
- ONTAP 9.7
- Active IQ Unified Manager 9.7 (formerly OnCommand Unified Manager)
- Active IQ Config Advisor

Table 1) ONAP ASA-qualified controllers.

<table>
<thead>
<tr>
<th></th>
<th>ASA AFF A220</th>
<th>ASA AFF A700</th>
</tr>
</thead>
<tbody>
<tr>
<td>Form factor</td>
<td>2U</td>
<td>8U</td>
</tr>
<tr>
<td>CPU cores</td>
<td>12</td>
<td>36</td>
</tr>
<tr>
<td>Memory</td>
<td>64GB</td>
<td>1024GB</td>
</tr>
<tr>
<td>Maximum drives</td>
<td>144</td>
<td>480</td>
</tr>
</tbody>
</table>

5.2 NetApp Tools for ASA

NetApp Interoperability Matrix Tool

The NetApp IMT lists all the qualified configurations that have been tested and proven to fully interoperate. It is extremely important for storage managers to verify that their end-to-end storage configurations match the qualifications that are detailed in the IMT. A nonqualified configuration might work; however, NetApp can’t guarantee that it will work, or work optimally. If you need support, NetApp Support typically starts a support effort with a plan to get your system into a supported or qualified configuration.

The main way to confirm that you are in a qualified configuration is to use the IMT to verify that your configuration matches a qualified configuration. Figure 3 displays the results from an IMT search.

Figure 3) NetApp Interoperability Matrix Tool search results example.

Alternatively, you can use the NetApp OneCollect data collection tool to obtain your configuration details.
5.3 Active IQ OneCollect Data Collection Tool

NetApp Active IQ OneCollect is a data collection tool that gathers data from storage, hosts, and switches. The collected data is used for troubleshooting, solution validation, migration, and upgrade assessments. NetApp Active IQ OneCollect is available to NetApp customers, channel partners, and internal users.

You can use the OneCollect tool to gather all the necessary data about an existing configuration. You can download it from the NetApp Support site and run it on various local hosts (Windows, Linux, Mac) or from a Docker image.

For more information about OneCollect, check out the OneCollect tool page or the latest OneCollect Installation and Setup Guide.

As shown in Figure 4, you can use OneCollect to gather configuration data and then compare the collected data with the IMT to verify a qualified configuration. You can also create a gap list that your administrators can use to remediate any issues.

Figure 4) Active IQ OneCollect IMT advisor.

5.4 OnCommand Insight

NetApp OnCommand Insight gathers and displays in-depth configuration and management information that provides insights, visualizations, and analysis that can be invaluable for storage administrators, managers, and architects. See Figure 5 for a screenshot of an OnCommand Insight dashboard.

Note: Although it’s not required, NetApp strongly recommends that you use OnCommand Insight 7.3.5 or later. OnCommand Insight discovers and analyzes:

- All storage arrays, regardless of make, model, or manufacturer
- All hosts, with granular enough data that it can report on host bus adapter (HBA) and unified target adapter (UTA) information
- All switches, including fabric information, in addition to more specific switch-centric data

For more information about OnCommand Insight, follow the links in the Where to Find Additional Information section of this technical report.
5.5 Active IQ Unified Manager

Active IQ Unified Manager enables:

- Health monitoring
- Performance monitoring and analysis
- Utilization and usage reporting
- Thresholding and alerting

Active IQ Unified Manager, shown in Figure 6, provides complete ONTAP estate monitoring for all ONTAP clusters from a single pane. It’s available as a Windows or Linux installation or as a VMware-based virtual appliance.
5.6 SAN Environmental Requirements

All ASA environments are assumed to have been architected to follow general SAN best practices: redundant fabrics and the use of dedicated high-speed storage networks that are segregated from general Ethernet communications networks. For details about best practices, see TR-4080: Best Practices for Modern SAN ONTAP 9.

5.7 Hardware Configuration

ONTAP All SAN Array systems are introduced with ONTAP 9.7 as a single cluster that contains a single HA pair. This version of ASA cannot be expanded beyond that single HA pair.

5.8 Storage Controllers

Table 1 lists the NetApp storage controllers that support All SAN Arrays.

5.9 Storage Media: NetApp AFF

The baseline configuration has been tested and qualified with a particular storage layout when running an AFF storage system. AFF nodes in a business-processing cluster must meet the storage subsystem hardware requirements that are described in Table 2.

Table 2) ONTAP ASA cluster limits.

<table>
<thead>
<tr>
<th>Limits</th>
<th>AFF</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aggregate type</td>
<td>SSD only</td>
<td>All NetApp All SAN Arrays are AFF.</td>
</tr>
<tr>
<td>Advanced Disk</td>
<td>Yes</td>
<td>Advanced Disk Partitioning 2 (ADP2)—one root, two data partitions. Each disk has three partitions, with a data partition per controller, up to the first 48 disks. The remaining disks are partitioned normally.</td>
</tr>
<tr>
<td>Max storage devices/node</td>
<td>240</td>
<td></td>
</tr>
<tr>
<td>Data aggregates</td>
<td>1–10</td>
<td></td>
</tr>
<tr>
<td>Drive/RAID group</td>
<td>11–28</td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>Max. vols/node</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>Max. LUNs/node</td>
<td>4,000</td>
<td></td>
</tr>
<tr>
<td>NetApp ONTAP Snapshot™ copies/vol</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>Data aggregate space utilization</td>
<td>>75%</td>
<td></td>
</tr>
<tr>
<td>Controller utilization</td>
<td>50% performance capacity</td>
<td></td>
</tr>
</tbody>
</table>

For CPU/disk utilization: Use the Active IQ Unified Manager headroom tool. CPU utilization of <=50% applies to steady-state only. In takeover, CPU utilization can go higher than 50% due to load from the other node.

5.10 Steady-State Storage Utilization

NetApp recommends that you size All SAN Array nodes to less than 50% of performance capacity per node. This recommendation helps prevent an impact on performance if a failover occurs, where one controller hosts both controllers’ workloads. NetApp sizing tools are tuned to size ASA systems based on this recommendation. This recommendation doesn’t allow both controllers to optimize for steady-state operations, but it does ensure that there is no variability in performance if a failover occurs.

After the system is in operation, if workloads grow beyond the recommended maximum per node, NetApp suggests that ASA administrators balance these workloads back to below 50% per node. This rebalancing prevents performance impacts if a failover occurs. Neither ONTAP nor ASA specifically stops storage managers from provisioning beyond 50% performance capacity per node. The impact on takeover performance is correlated to the amount of performance capacity that is over 50%.

In previous technical reports, NetApp has recommended that storage administrators target the use of no more than 50% CPU and storage utilization to maintain consistent performance during a takeover. However, real-world experience has shown that some customers might find that this target utilization limit leaves potential capacity unused.

Therefore, going forward, NetApp recommends the use of performance capacity to optimize performance while maintaining consistently low latency. The section titled Steady-State Storage Utilization of this paper discusses utilization, capacity planning, and how performance capacity calculations work. For a working example of how to use Active IQ Unified Manager to determine performance capacity, review TR-4211: Storage Performance Primer, section 4.2, Using Performance Headroom to Determine Workload Placement. You can learn how to determine how much performance capacity a controller has, how much is used, and how much is available for new applications or for growth in existing applications.

5.11 Software Configuration

The software configuration that’s specific to a storage cluster running within the baseline configuration is meant to change over time as workloads and applications are added and removed. The software configuration section outlines the range of configuration values and settings that are included in the ASA configuration. To validate them automatically, you can use the Config Advisor tool. For more information about this tool and how to use it to validate a storage cluster’s settings, see Validating the ASA Configuration.
5.12 Aggregate Full and Nearly Full Thresholds

You can set a fullness threshold for aggregates so that when the total percentage of used space in the aggregate exceeds the threshold, an event is generated. This event can then be forwarded to an SNMP-based monitoring tool.

To increase warning times and reaction windows, you should set the AFF ASA controllers’ nearly full threshold to 70% and their full threshold to 75%. By lowering both thresholds, storage administrators have ample opportunity to take action well before an aggregate is completely filled, despite the smaller storage space that is commonly available when compared with storage controllers that use spinning media.

5.13 Host OS Configuration and Settings

NetApp publishes Host Utilities for the following host OS families:

- IBM AIX
- Microsoft Windows
- Linux
- Oracle Solaris
- VMware ESX (for use with ESX 4.0 or earlier)

The Host Utilities software comes with:

- Documentation that’s specific to the OS that it is designed for.
- Recommendations for configuration setting and tuning to optimize the OS for ONTAP SAN.
- The SANLUN utility, which provides several queries that are very helpful when documenting or troubleshooting host and ONTAP SAN interactions. These queries include listing paths, worldwide port name (WWPNs), iSCSI Qualified Names (IQNs), LUNs found, adapter settings, and so on.

Note: There are no differences in the host OS settings between hosts that connect to ONTAP unified controllers versus All SAN Array settings. Figure 7 shows the Host Utilities downloads page.

Figure 7) Host Utilities downloads.
5.14 ASA Specific Limits

To accelerate storage failover transition times, ASA configurations have lower maximum values for some parameters. Table 3 summarizes the differences between AFF systems and All SAN Array systems at the time of their introduction. ASA limits will likely change over time as NetApp workload and performance engineering tests identify object limit maximums that enable the ASA to minimize failover transition times (takeover or giveback). For a full, current list of limits, always check the NetApp Hardware Universe.

The virtually instantaneous transition time causes no impact because there are still active paths to all LUNs. I/Os are fenced while controllers are actively transitioning, then they are responded to after the storage transition is complete.

Table 3) AFF versus ASA maximums.

<table>
<thead>
<tr>
<th>Objects per Node</th>
<th>AFF Cluster Maximums</th>
<th>ASA Cluster Maximums</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum volumes</td>
<td>1,000</td>
<td>200</td>
</tr>
<tr>
<td>Data Protection Optimized (DPO) volumes</td>
<td>1,000</td>
<td>Not applicable; NetApp does not recommend DPO volumes on ASA</td>
</tr>
<tr>
<td>LUNs:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AFF A220</td>
<td>8,192</td>
<td>4,000</td>
</tr>
<tr>
<td>AFF A700</td>
<td>12,288</td>
<td>4,000</td>
</tr>
</tbody>
</table>

5.15 Protocol Support

ASA supports block protocols exclusively and currently supports both FC and iSCSI. NetApp expects to add NVMe over Fabrics (NVMe-oF) protocols in later ASA releases. Neither NAS protocols nor NAS-only features are supported on ASA.

5.16 Snapshot Scheduling and Policy

Although snapshot copies are supported on ASA systems, in most cases, NetApp recommends that you disable snapshot policies. There are two reasons to disable snapshot copies:

- Snapshot copies should be managed by a storage management tool, for instance, a member of the NetApp SnapCenter® suite of products, or should be application initiated to validate that they are application consistent.
- By disabling the snapshot policy, your storage managers can also better manage the number of Snapshot copies and the amount of space that’s consumed.

Use ONTAP System Manager to edit, to delete, or to disable snapshot policies. See Figure 8.
5.17 Thin Provisioning

ONTAP uses the NetApp WAFL® file system, which does not preallocate storage on disk before consuming it. This storage allocation policy is known as thin provisioning or dynamic provisioning. You can set space reserves to subtract free space from a volume, an aggregate, or a LUN and to hold it in reserve for future write operations. This approach is called thick provisioning. When space reserves are turned off and LUNs are created that, when fully written, could consume more space than is immediately available in a volume or an aggregate, the policy is known as storage overcommitment.

Storage overcommitment requires that free space be continuously monitored to meet the needs of hosted applications. This policy also requires an action plan for increasing the free space that's available (either through nondisruptive data mobility operations or by expanding aggregate sizes). Therefore, the most conservative option is to fully provision storage, but at the cost of additional storage capacity that might not be required.

If you use thin provisioning, a strategy or action plan must be documented and in place to mitigate low-space scenarios. It is also a best practice to leave >25% free space in the hosting aggregate and to adjust free space thresholds for those aggregates. This recommendation is made to give storage managers enough time to react to low-space situations. See section 5.12, Aggregate Full and Nearly Full Thresholds.

5.18 LUN Space Allocation

The space allocation option on LUNs is disabled by default; you should not enable it. The space allocation setting determines whether a LUN supports SCSI unmap/space reclamation.

5.19 Space Reclamation (T10 hole-punching/unmap)

Space reclamation can be extremely processor intensive and potentially long-running and is therefore not supported in ASA. If any LUN that has this option enabled is replicated or migrated into the ASA, you should disable the option before allowing the LUN to be discovered by a host system. Not disabling this option could lead to potentially long-running performance impacts while unmapping scans are running on hosts and then communicated back to the ASA. This hole-punching is triggered by low-space or number-of-deleted-block thresholds that can be triggered during peak production times.

5.20 Validate the ASA Configuration

You can validate the ASA configuration with the Config Advisor tool (Figure 9) Config Advisor with Managed ONTAP SAN plug-in.). Config Advisor examines an ASA cluster's current configuration and compares it with the baseline configuration, as detailed in this document. Table 4 contains a list of the checks performed by config advisor. You should keep the resulting list of warnings for archival purposes.
and used it as a list of items to be remediated (Figure 10) Configuration verification by Config Advisor with Managed ONTAP SAN plug-in.).

The resulting output details any areas where the storage cluster’s current configuration differs from the baseline configuration. You should schedule remediation actions to reestablish compliance for any configuration details that do not conform to the baseline configuration.

![Figure 9) Config Advisor with Managed ONTAP SAN plug-in.](image)

Figure 10) Configuration verification by Config Advisor with Managed ONTAP SAN plug-in.

![Table 4) Configuration checks performed by Active IQ Config Advisor.](image)

<table>
<thead>
<tr>
<th>Check Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Node health check</td>
<td>Verifies that nodes are healthy and can be queried for information</td>
</tr>
<tr>
<td>Model check</td>
<td>Verifies that all nodes are ASA supported controllers</td>
</tr>
<tr>
<td>Network interfaces check</td>
<td>Verifies that only SAN LIFs exist on the cluster</td>
</tr>
<tr>
<td>Aggregates per node check</td>
<td>Verifies that from 1 through 10 data aggregates are on each node</td>
</tr>
<tr>
<td>Aggregates at home check</td>
<td>Verifies that all aggregates are currently being serviced by their owning node</td>
</tr>
<tr>
<td>Aggregates utilization check</td>
<td>Verifies that no aggregates exceed 75% utilization</td>
</tr>
<tr>
<td>Volumes per node check</td>
<td>Verifies that no nodes own more than 200 volumes</td>
</tr>
<tr>
<td>Snapshot copies per volume check</td>
<td>Verifies that no volumes have more than 40 Snapshot copies</td>
</tr>
<tr>
<td>SFO check</td>
<td>Verifies that all nodes have SFO enabled</td>
</tr>
<tr>
<td>SAN SVM (formerly Vserver) QoS check</td>
<td>Verifies that quality of service (QoS) is enabled on all storage virtual machines (SVMs)</td>
</tr>
</tbody>
</table>
6 Performance Capacity, CPU Utilization, Storage Utilization, and Performance Capacity Planning

To determine optimal solution sizing, solutions engineers from NetApp or a qualified channel partner should perform the initial sizing by using NetApp, OS, and application vendor best practices and NetApp internally available tools. After the initial sizing, NetApp recommends that you base all incremental performance sizing, monitoring, capacity planning, and workload placement on the Active IQ Unified Manager performance capacity determination. This approach is a departure from NetApp’s previous recommendation, which was to size workloads to use less than 50% CPU utilization.

NetApp’s best practice for sizing ASA systems is to use performance capacity to size each node to less than 50% of the performance capacity on each controller. By sizing this way, you can maintain acceptable low latency if a takeover occurs. The cost of this approach is that you sacrifice a little of the steady-state top-line performance.

For a full discussion of performance capacity and how to use Active IQ Unified Manager to measure controller utilization to make placement decisions, review section 4 of TR-4211: Storage Performance Primer.

7 ASA Service Offering Lifecycle

7.1 Size an ASA Cluster

Most ASA clusters will need to grow over time. NetApp or certified partner solutions engineers or architects must determine the cluster’s initial controller models, disks, and shelves. This determination can be made with NetApp OS and application vendor sizing tools, or with the deployment guide that’s associated with the applications that the cluster hosts. For other sizing guides that are appropriate to particular applications, see Where to Find Additional Information and section 5.10, Steady-State Storage Utilization, in this technical report. Storage managers will need to manage additional workload growth by rebalancing it across the ASA and even possibly between the current and additional ASAs.

7.2 Initial Setup and Prevalidation

Before you begin qualification and acceptance testing of a new ASA system, you should perform several steps after basic hardware installation of the cluster nodes. These steps are shown in the following checklists and validation guidelines.

7.3 Initial Hardware Setup Checklist

Install all the cluster nodes, including shelves, cluster network switches, and cabling, according to their installation guides. Table 5 shows the checklist items.

Table 5) Hardware setup checklist.

<table>
<thead>
<tr>
<th>Checklist Item</th>
</tr>
</thead>
<tbody>
<tr>
<td>All the ASA cluster's hardware components are operational.</td>
</tr>
</tbody>
</table>

© 2019 NetApp, Inc. All Rights Reserved.
The cluster’s data center environment falls within the parameters that are specified in the Hardware Universe.

Neither node nor network switches have fault indicators.

All power supply units and system fans are operational.

No shelf modules or SSDs display faults.

The FCP and iSCSI licenses are enabled, as appropriate.

The cluster’s disks, cluster network, and HA failover cabling are correct and have been validated by the Config Advisor tool.

7.4 Initial Hardware Setup Validation

To validate the initial hardware setup checklist that is shown in Table 5, use the validation method from the corresponding checklist item in Table 6.

Table 6: Hardware checklist validation methods.

<table>
<thead>
<tr>
<th>Checklist Validation Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Validate according to data center policies and guidelines:</td>
</tr>
<tr>
<td>• Visually inspect cluster hardware for fault lights or other indicators.</td>
</tr>
<tr>
<td>• Review storage controller environmental sensor readouts.</td>
</tr>
<tr>
<td>• Review the cluster dashboard by using ONTAP System Manager.</td>
</tr>
<tr>
<td>Review disk and shelf status values by using ONTAP System Manager. Under the cluster menu, review the overview and disks menu. The dashboard also has alerts for any problem components.</td>
</tr>
<tr>
<td>Review Config Advisor output.</td>
</tr>
<tr>
<td>Review the licenses that are currently installed by reviewing ONTAP System Manager, Cluster > Settings. The License tile displays licensed protocols and features; you can also enable any additional licenses that are supported on the ASA from that tile.</td>
</tr>
</tbody>
</table>

7.5 Configuration Tool Setup Checklist

For the list of configuration tools that are part of an ASA environment, see Table 7.

Table 7: ASA configuration tools.

<table>
<thead>
<tr>
<th>Configuration Tool</th>
<th>Version</th>
<th>Schedule</th>
<th>Functionality</th>
</tr>
</thead>
<tbody>
<tr>
<td>OneCollect</td>
<td>Latest</td>
<td>When configuration changes</td>
<td>Checks and preserves end-to-end configuration details</td>
</tr>
<tr>
<td>Config Advisor</td>
<td>Latest</td>
<td>When cluster configuration changes</td>
<td>Checks cabling and HA properties of storage systems</td>
</tr>
</tbody>
</table>

7.6 OnCommand Insight Report Checklist

Although OnCommand Insight is an optional component of a NetApp ASA configuration, this section showcases just how valuable a monitoring tool OnCommand Insight can be. Storage administration and application stakeholders negotiate which storage performance, availability, and utilization reports to deliver, along with the report format and schedule. The reports take the form of dashboard views of the
ASA cluster storage from both application and total storage utilization viewpoints, as shown in Table 8 and Table 9.

Table 8) OnCommand Insight per-application reports.

<table>
<thead>
<tr>
<th>Per-Application Report</th>
<th>Description</th>
<th>Suggested Schedules</th>
</tr>
</thead>
<tbody>
<tr>
<td>End-to-end latency</td>
<td>~5-minute average latency of all objects that are associated with a given application, including storage volumes, fabric switches and ports, hosts, and VMs</td>
<td>Daily, weekly, monthly</td>
</tr>
<tr>
<td>End-to-end throughput</td>
<td>~5-minute average throughput of all objects that are associated with a given application, as noted earlier</td>
<td>Daily, weekly, monthly</td>
</tr>
<tr>
<td>Fabric redundancy/path-count violations</td>
<td>Times at which violations occurred and were resolved, correlated with latency and throughput reports</td>
<td>Daily, weekly, monthly</td>
</tr>
<tr>
<td>Storage growth delta</td>
<td>Growth of storage that’s required by application over time, along with chargeback value (if any)</td>
<td>Weekly, monthly</td>
</tr>
</tbody>
</table>

Table 9) OnCommand Insight storage environment reports.

<table>
<thead>
<tr>
<th>Storage Environment Report</th>
<th>Description</th>
<th>Suggested Schedules</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storage volume latency</td>
<td>~5-minute average latency of all storage volumes on a per-node basis, along with “top volumes”</td>
<td>Daily, weekly, monthly</td>
</tr>
<tr>
<td>Storage volume throughput</td>
<td>~5-minute average throughput of all storage volumes on a per-node basis, along with “top volumes”</td>
<td>Daily, weekly, monthly</td>
</tr>
<tr>
<td>Overall aggregate capacity</td>
<td>Time at which violations occurred and were resolved, correlated with latency and throughput reports</td>
<td>Daily, weekly, monthly</td>
</tr>
<tr>
<td>Storage growth delta</td>
<td>Graph of used versus total capacity for the entire storage environment, along with return-on-investment (ROI) calculations</td>
<td>Weekly, monthly</td>
</tr>
</tbody>
</table>

Note: You should add any existing ASAs to NetApp OnCommand Insight as a point of comparison and validation that the ASA is meeting application latency and availability requirements.

7.7 Pre-deployment Validation Tasks
Table 10 provides a checklist of pre-deployment validation tasks.

Table 10) Pre-deployment validation task checklist.

<table>
<thead>
<tr>
<th>Prevalidation Task</th>
<th>Desired Result</th>
</tr>
</thead>
</table>

Identify the hosts, fabrics, and networks that connect to the ASA, including hosts used during validation phases and when the ASA is serving applications in a production role.

You have validated the hardware and software in your environment are supported in an ASA environment, including hosts, networks, and fabrics.

Gather configuration details by using the OneCollect tool and use the OneCollect IMT advisor to verify qualified configurations.

The OneCollect IMT advisor validates that the full environment is IMT compliant.

Connect hosts to the ASA cluster by using the iSCSI or FC Protocol.

LUNs provided by the ASA cluster that are suitable for testing are mounted on hosts in the ASA application environment.

For a description of SAN topologies and host setup details, see the ONTAP SAN Configuration Guide.

7.8 Validation Testing

OnCommand Insight monitoring and reporting capabilities help the ASA keep serving data with consistent performance during the testing scenarios that are listed in Table 11. If you are not using OnCommand Insight, then you must develop other procedures for monitoring and testing your ASA configuration.

Table 11) Application validation test items.

<table>
<thead>
<tr>
<th>Number</th>
<th>Validation Test</th>
<th>Desired Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cable pull and port shutdown to cause path failure:</td>
<td>Path faults are detected by OnCommand Insight or by Active IQ Unified Manager; storage volume performance is still within ASA parameters.</td>
</tr>
<tr>
<td></td>
<td>• From the storage controller to the fabric or Ethernet switch</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• From the host to the fabric or Ethernet switch</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Planned takeover and giveback of storage controllers</td>
<td>Storage I/O is not disrupted; storage performance is unaffected; alerts are sent out by using Active IQ Unified Manager and AutoSupport.</td>
</tr>
<tr>
<td>3</td>
<td>Unplanned takeover and giveback of storage controllers</td>
<td>Storage I/O is not disrupted; storage performance is unaffected; alerts are sent out by using Active IQ Unified Manager and AutoSupport.</td>
</tr>
</tbody>
</table>

7.9 Manage and Schedule Operations That Help Increase System Utilization

There are several operations that a storage administrator can run that can increase processor and disk utilization temporarily while the operations are being run.

Some of these operations include non-Disruptive volume and LUN move operations, such as a volume move or LUN move, large Snapshot deletes, and NetApp SnapMirror® initializations or re-baselines. As commonsense guidance, NetApp recommends that, where possible, you schedule these operations during nonpeak or lower-utilization periods.

NetApp also recommends that you reduce the number of concurrent operations that you run. For instance, don’t perform 20 volume moves at a time; such operations will reduce performance. By following these guidelines, you can achieve higher performance. In addition, operations such as volume
moves complete more rapidly, which has the added benefit of reducing the amount of time that your controllers are subject to the utilization costs of these types of operations.

Appendix A: Configure Active Directory Domain Controller Access

Before an Active Directory account can access the SVM, you must configure Active Directory domain controller access to the cluster or SVM. Because a CIFS volume is not present on the ASA, you can create a computer account for the SVM on the Active Directory domain.

You have two options for configuring Active Directory domain controller authentication:

- **Configure an authentication tunnel.** If you have already configured a CIFS server for a data SVM, you can use the `security login domain-tunnel create` command to configure the SVM as a gateway, or tunnel, for Active Directory access to the cluster.

- **Create an SVM computer account on the domain.** If you have not configured a CIFS server for a data SVM, you can use the `vserver active-directory create` command to create a computer account for the SVM on the domain.

For more information, see the related NetApp Knowledgebase article.

Where to Find Additional Information

The following references were used in this technical report:

- TR-4080: Best Practices for Scalable SAN in ONTAP 9
- Config Advisor
- NetApp Hardware Universe
 https://hwu.netapp.com/
- Active IQ OneCollect 1.8 Installation and Setup Guide
 https://library.netapp.com/ecm/ecm_get_file/ECMLP2672457
- TR-4211: Storage Performance Primer
 https://www.netapp.com/media/tr-4211
- TR-4380: SAN Migration Using Foreign LUN Import
- NetApp Support Offerings
 http://www.netapp.com/us/services-support/services/operations/services-descriptions.aspx
- OnCommand Insight

Version History

<table>
<thead>
<tr>
<th>Version</th>
<th>Date</th>
<th>Document Version History</th>
</tr>
</thead>
<tbody>
<tr>
<td>Version 1.0</td>
<td>August 2016</td>
<td>Initial version</td>
</tr>
<tr>
<td>Version 2.0</td>
<td>October 2018</td>
<td>Minor version updates</td>
</tr>
<tr>
<td>Version 2.1</td>
<td>December 2018</td>
<td>Minor version updates</td>
</tr>
<tr>
<td>Version 2.2</td>
<td>April 2019</td>
<td>Minor version updates, TR name change</td>
</tr>
<tr>
<td>Version 3.0</td>
<td>November 2019</td>
<td>Major update, added All SAN Array</td>
</tr>
</tbody>
</table>
Refer to the Interoperability Matrix Tool (IMT) on the NetApp Support site to validate that the exact product and feature versions described in this document are supported for your specific environment. The NetApp IMT defines the product components and versions that can be used to construct configurations that are supported by NetApp. Specific results depend on each customer's installation in accordance with published specifications.

Copyright Information

Copyright © 2016–2019 NetApp, Inc. All Rights Reserved. Printed in the U.S. No part of this document covered by copyright may be reproduced in any form or by any means—graphic, electronic, or mechanical, including photocopying, recording, taping, or storage in an electronic retrieval system—without prior written permission of the copyright owner.

Software derived from copyrighted NetApp material is subject to the following license and disclaimer:

THIS SOFTWARE IS PROVIDED BY NETAPP “AS IS” AND WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL NETAPP BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

NetApp reserves the right to change any products described herein at any time, and without notice. NetApp assumes no responsibility or liability arising from the use of products described herein, except as expressly agreed to in writing by NetApp. The use or purchase of this product does not convey a license under any patent rights, trademark rights, or any other intellectual property rights of NetApp.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or pending applications.

Data contained herein pertains to a commercial item (as defined in FAR 2.101) and is proprietary to NetApp, Inc. The U.S. Government has a non-exclusive, non-transferrable, non-sublicensable, worldwide, limited irrevocable license to use the Data only in connection with and in support of the U.S. Government contract under which the Data was delivered. Except as provided herein, the Data may not be used, disclosed, reproduced, modified, performed, or displayed without the prior written approval of NetApp, Inc. United States Government license rights for the Department of Defense are limited to those rights identified in DFARS clause 252.227-7015(b).

Trademark Information

NETAPP, the NETAPP logo, and the marks listed at http://www.netapp.com/TM are trademarks of NetApp, Inc. Other company and product names may be trademarks of their respective owners.