NetApp Verified Architecture

NetApp ONTAP AI, Powered by NVIDIA

Scalable AI Infrastructure for Real-World Deep Learning Use Cases: Deployment Guide

David Arnette, Amit Borulkar, and Robert Franz, NetApp
October 2018 | NVA-1121-DEPLOY

Abstract

This document contains detailed deployment information for the NetApp® ONTAP® AI solution powered by NVIDIA®. This architecture includes a NetApp AFF_A800 storage system, four NVIDIA DGX-1™ servers, and two Cisco Nexus 3232C 100Gb Ethernet switches. This document also contains instructions for validating the operation and performance of this system using industry-standard benchmark tools. Detailed design information for this solution can be found in the NetApp Verified Architecture document NVA-1121-DESIGN.
TABLE OF CONTENTS

1 Program Summary .. 4
 1.1 NetApp Verified Architecture Program .. 4
 1.2 NetApp ONTAP AI Solution ... 4

2 Solution Overview .. 5
 2.1 Solution Technology .. 5
 2.2 Use Case Summary ... 6

3 Technology Requirements .. 7
 3.1 Hardware Requirements .. 7
 3.2 Software Requirements .. 7

4 Solution Hardware Installation and Cabling ... 8
 4.1 Hardware Installation and Basic Setup ... 8
 4.2 Solution Cabling ... 8

5 Solution Configuration Details ... 12
 5.1 Cisco Nexus 3232C Configuration ... 12
 5.2 NetApp AFF A800 Configuration ... 18
 5.3 NVIDIA DGX-1 Server Configuration ... 21

6 Solution Verification ... 27
 6.1 Network Validation .. 27
 6.2 Storage System Validation .. 29
 6.3 Basic TensorFlow Validation ... 30

7 Conclusion .. 33

Acknowledgments .. 33

Where to Find Additional Information .. 33

Version History ... 34

LIST OF TABLES
Table 1) Hardware requirements ... 7
Table 2) Software requirements ... 7
Table 3) Nexus switch A port connections ... 10
Table 4) Nexus switch B port connections ... 10
Table 5) NetApp AFF A800 port connections ... 11
Table 6) NVIDIA DGX-1 server port connections ... 11
Table 7) Cisco Nexus switch VLANs ... 12
Table 8) NetApp AFF A800 interface group configuration...19
Table 9) NVIDIA DGX-1 physical interfaces and VLANs...23
Table 10) NVIDIA DGX-1 bonded interfaces and VLANs...23
Table 11) Validated software versions. ..31
Table 12) TensorFlow general benchmark settings..31
Table 13) Settings for datasets_num_private_threads in TensorFlow benchmarks....................32

LIST OF FIGURES
Figure 1) ONTAP AI solution rack-scale architecture...5
Figure 2) ONTAP AI solution verified architecture..6
Figure 3) ONTAP AI cabling diagram...9
1 Program Summary

1.1 NetApp Verified Architecture Program

The NetApp Verified Architecture (NVA) program offers customers a verified architecture for NetApp solutions. NVAs provide customers with a NetApp solution architecture that:

- Is thoroughly tested
- Is prescriptive in nature
- Minimizes deployment risks
- Accelerates time to market

This document is for NetApp and partner solutions engineers and customer strategic decision makers. It includes specific installation and configuration information for the implementation of this solution as tested. See the ONTAP AI Design Guide for the architecture design considerations used to determine the appropriate configuration that meets specific customer requirements.

1.2 NetApp ONTAP AI Solution

NetApp ONTAP® AI proven architecture, powered by NVIDIA DGX supercomputers and NetApp cloud-connected storage, has been developed and verified by NetApp and NVIDIA. It provides organizations with a prescriptive architecture that provides the following benefits:

- It eliminates design complexities.
- It permits the independent scaling of compute and storage.
- It can start small and scale seamlessly.
- It provides a range of storage options for various performance and cost points.

ONTAP AI integrates NVIDIA DGX-1 servers with NVIDIA Tesla® V100 graphic processing units (GPUs) and a NetApp AFF A800 system with state-of-the-art networking. ONTAP AI simplifies AI deployments by eliminating design complexity and guesswork, enabling enterprises to start small and grow nondisruptively while intelligently managing data from edge to core to cloud and back.

Figure 1 shows the scalability of the ONTAP AI solution. The AFF A800 system has been verified with four DGX-1 servers and has demonstrated sufficient performance headroom to support five or more DGX-1 servers without affecting storage throughput or latency. By adding additional network switches and storage controller pairs to the ONTAP cluster, the solution can scale to multiple racks to deliver extremely high throughput and accelerate training and inferencing. This approach offers the flexibility of altering the ratio of compute to storage independently according to the size of the data lake, the deep learning (DL) models used, and the required performance metrics.
The number of DGX-1 servers and AFF systems that can be placed in a rack depends on the power and cooling specifications of the rack in use. Final placement of the systems is subject to computational fluid dynamics analysis, airflow management, and data center design.

2 Solution Overview

DL systems use algorithms that are computationally intensive and uniquely suited to the architecture of the NVIDIA GPUs. Computations performed in DL algorithms involve an immense volume of matrix multiplications running in parallel. The highly parallelized architecture of modern GPUs makes them substantially more efficient than general-purpose CPUs for applications such as DL, where data processing is done in parallel. Advances in individual and clustered NVIDIA GPU computing architectures that use the DGX-1 server have made them the preferred platform for workloads such as high-performance computing (HPC), DL, and analytics. Providing maximized performance for these environments requires a supporting infrastructure that can keep NVIDIA GPUs fed with data. Dataset access must therefore be provided at ultra-low latencies with high bandwidth. Ethernet technology has achieved performance levels that were previously only possible with InfiniBand. Therefore, RDMA over Converged Ethernet (RoCE) enables easier adoption of these capabilities, because Ethernet technologies are well understood and widely deployed in every enterprise data center.

2.1 Solution Technology

This solution was validated with one NetApp AFF A800 system, four NVIDIA DGX-1 servers, and two Cisco Nexus 3232C 100Gb Ethernet switches. Each DGX-1 server was connected to the Nexus switches with four 100GbE connections that were used for inter-GPU communications using RoCE. Traditional IP communications for NFS storage access also occur on these links. Each storage controller was connected to the network switches using four 100GbE links.

Figure 2 shows the basic solution architecture.
2.2 Use Case Summary

This solution is intended to support the training and inference phases of the AI and DL pipeline. Depending on the application, DL models work with large amounts of different types of data (both structured and unstructured). This difference imposes a varied set of requirements on the underlying storage system, both in terms of size of the data that is being stored and the number of files in the dataset.

The high-level storage requirements include the following:

- The ability to store and to retrieve millions of files concurrently
- Storage and retrieval of diverse data objects such as images, audio, video, and time-series data
- Delivery of high parallel performance at low latencies to meet the GPU processing speeds
- Seamless data management and data services that span the edge, the core, and the cloud

For the critical training phase of DL, data is typically copied from the data lake into the training cluster at regular intervals. That data is then processed repeatedly by the DL model to achieve the desired machine learning proficiency. The servers that are used in this phase use GPUs to parallelize computations, creating a tremendous appetite for data. Meeting the raw I/O bandwidth needs is crucial for maintaining high GPU utilizations.

In the inference phase, the trained models are tested and deployed into production. Alternatively, they can be fed back to the data lake for further adjustments of input weights. Also, in Internet of Things (IoT) applications, the models can be deployed to the smart edge devices for initial edge processing.
3 Technology Requirements

This section covers the hardware and software used in the validation of this solution. All testing documented in section 6, “Solution Verification,” and the ONTAP AI Design Guide was performed with the hardware and software indicated here.

Note: The configuration verified in this reference architecture was based on lab equipment availability and not on the requirements or limitations of the hardware tested.

3.1 Hardware Requirements

Table 1 lists the hardware components that were used to validate this solution. The hardware components used in any particular implementation of this solution might vary according to customer requirements.

Table 1) Hardware requirements.

<table>
<thead>
<tr>
<th>Hardware</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>NVIDIA DGX-1 GPU servers</td>
<td>4</td>
</tr>
<tr>
<td>NetApp AFF A800 system</td>
<td>1 high availability (HA) pair—including 48x 1.92TB NVMe SSDs</td>
</tr>
<tr>
<td>Cisco Nexus 3232C network switches</td>
<td>2</td>
</tr>
</tbody>
</table>

3.2 Software Requirements

Table 2 lists the software components that are required to implement the solution. The software components used in any particular implementation of the solution might vary according to customer requirements.

Table 2) Software requirements.

<table>
<thead>
<tr>
<th>Software</th>
<th>Versions</th>
</tr>
</thead>
<tbody>
<tr>
<td>NetApp ONTAP</td>
<td>9.4</td>
</tr>
<tr>
<td>Cisco NX-OS switch firmware</td>
<td>7.0(3)I6(1)</td>
</tr>
<tr>
<td>NVIDIA DGX-1 operating system</td>
<td>Ubuntu 16.04 LTS</td>
</tr>
<tr>
<td>Docker container platform</td>
<td>18.03.1-ce [9ee9f40]</td>
</tr>
<tr>
<td>Container version</td>
<td>netapp_1.7.0.2 based on nvcr.io/nvidia/tensorflow:18.04-py2</td>
</tr>
<tr>
<td>Machine learning framework</td>
<td>TensorFlow 1.7.0</td>
</tr>
<tr>
<td>Horovod</td>
<td>0.11.3</td>
</tr>
<tr>
<td>Open MPI</td>
<td>3.1.0</td>
</tr>
<tr>
<td>Benchmark software</td>
<td>TensorFlow benchmarks [1b1ca8a]</td>
</tr>
</tbody>
</table>
4 Solution Hardware Installation and Cabling

4.1 Hardware Installation and Basic Setup

All hardware components should be installed in data center racks according to the vendor’s recommended guidelines. All components used in the validation of this solution fit into a single rack with room for additional DGX-1 servers. Specific rack power and cooling capacities determine exactly how many servers can be supported in each rack.

Perform basic setup for each component using the appropriate installation documentation. The following configuration procedures assume that all components have been installed and configured for management access and have been upgraded to the software and firmware versions recommended in this validation. For specific details on basic installation and setup, see the appropriate vendor documentation. Links are provided in the “Configuration Details” section.

4.2 Solution Cabling

This section contains information about the specific cabling used in the validation of this solution. This cabling configuration might be modified to meet customer-specific implementation requirements.

The cabling for this solution is shown in Figure 3. DGX-1 physical interface names have been abbreviated in this drawing for brevity.
Figure 3) ONTAP AI cabling diagram.
Network Switch Port Connections

Table 3 shows the switch connections for switch A.

Table 3) Nexus switch A port connections.

<table>
<thead>
<tr>
<th>Switch name</th>
<th>Port Name</th>
<th>Connected Device and Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>ONTAPAI-SW-A</td>
<td>Eth1/1</td>
<td>A800-01:e2a</td>
</tr>
<tr>
<td>ONTAPAI-SW-A</td>
<td>Eth1/2</td>
<td>A800-01:e4a</td>
</tr>
<tr>
<td>ONTAPAI-SW-A</td>
<td>Eth1/3</td>
<td>A800-02:e2a</td>
</tr>
<tr>
<td>ONTAPAI-SW-A</td>
<td>Eth1/4</td>
<td>A800-02:e4a</td>
</tr>
<tr>
<td>ONTAPAI-SW-A</td>
<td>Eth1/11</td>
<td>ONTAPAI-SW-B:Eth1/11</td>
</tr>
<tr>
<td>ONTAPAI-SW-A</td>
<td>Eth1/13</td>
<td>ONTAPAI-SW-B:Eth1/13</td>
</tr>
<tr>
<td>ONTAPAI-SW-A</td>
<td>Eth1/14</td>
<td>ONTAPAI-SW-B:Eth1/14</td>
</tr>
<tr>
<td>ONTAPAI-SW-A</td>
<td>Eth1/25</td>
<td>DGX1-A:enp5s0</td>
</tr>
<tr>
<td>ONTAPAI-SW-A</td>
<td>Eth1/26</td>
<td>DGX1-A:enp12s0</td>
</tr>
<tr>
<td>ONTAPAI-SW-A</td>
<td>Eth1/27</td>
<td>DGX1-B:enp5s0</td>
</tr>
<tr>
<td>ONTAPAI-SW-A</td>
<td>Eth1/28</td>
<td>DGX1-B:enp12s0</td>
</tr>
<tr>
<td>ONTAPAI-SW-A</td>
<td>Eth1/29</td>
<td>DGX1-C:enp5s0</td>
</tr>
<tr>
<td>ONTAPAI-SW-A</td>
<td>Eth1/30</td>
<td>DGX1-C:enp12s0</td>
</tr>
<tr>
<td>ONTAPAI-SW-A</td>
<td>Eth1/31</td>
<td>DGX1-D:enp5s0</td>
</tr>
<tr>
<td>ONTAPAI-SW-A</td>
<td>Eth1/32</td>
<td>DGX1-D:enp12s0</td>
</tr>
</tbody>
</table>

Table 4 shows the switch connections for switch B.

Table 4) Nexus switch B port connections.

<table>
<thead>
<tr>
<th>Switch name</th>
<th>Port Name</th>
<th>Connected Device and Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>ONTAPAI-SW-B</td>
<td>Eth1/1</td>
<td>A800-01:e2b</td>
</tr>
<tr>
<td>ONTAPAI-SW-B</td>
<td>Eth1/2</td>
<td>A800-01:e4b</td>
</tr>
<tr>
<td>ONTAPAI-SW-B</td>
<td>Eth1/3</td>
<td>A800-02:e2b</td>
</tr>
<tr>
<td>ONTAPAI-SW-B</td>
<td>Eth1/4</td>
<td>A800-02:e4b</td>
</tr>
<tr>
<td>ONTAPAI-SW-B</td>
<td>Eth1/11</td>
<td>ONTAPAI-SW-A:Eth1/11</td>
</tr>
<tr>
<td>ONTAPAI-SW-B</td>
<td>Eth1/12</td>
<td>ONTAPAI-SW-A:Eth1/12</td>
</tr>
<tr>
<td>ONTAPAI-SW-B</td>
<td>Eth1/13</td>
<td>ONTAPAI-SW-A:Eth1/13</td>
</tr>
<tr>
<td>ONTAPAI-SW-B</td>
<td>Eth1/14</td>
<td>ONTAPAI-SW-A:Eth1/14</td>
</tr>
<tr>
<td>ONTAPAI-SW-B</td>
<td>Eth1/25</td>
<td>DGX1-A:enp139s0</td>
</tr>
<tr>
<td>ONTAPAI-SW-B</td>
<td>Eth1/26</td>
<td>DGX1-A:enp139s0</td>
</tr>
<tr>
<td>ONTAPAI-SW-B</td>
<td>Eth1/27</td>
<td>DGX1-B:enp139s0</td>
</tr>
<tr>
<td>ONTAPAI-SW-B</td>
<td>Eth1/28</td>
<td>DGX1-B:enp139s0</td>
</tr>
<tr>
<td>ONTAPAI-SW-B</td>
<td>Eth1/29</td>
<td>DGX1-C:enp139s0</td>
</tr>
<tr>
<td>ONTAPAI-SW-B</td>
<td>Eth1/30</td>
<td>DGX1-C:enp139s0</td>
</tr>
<tr>
<td>ONTAPAI-SW-B</td>
<td>Eth1/31</td>
<td>DGX1-D:enp139s0</td>
</tr>
<tr>
<td>ONTAPAI-SW-B</td>
<td>Eth1/32</td>
<td>DGX1-D:enp139s0</td>
</tr>
</tbody>
</table>
Storage Controller Port Connections

Table 5 shows the ports that are connected to the NetApp AFF A800 storage system.

Table 5) NetApp AFF A800 port connections.

<table>
<thead>
<tr>
<th>Controller name</th>
<th>Port Name</th>
<th>Connected Device and Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>A800-01</td>
<td>e0M</td>
<td>management switch</td>
</tr>
<tr>
<td>A800-01</td>
<td>e0a</td>
<td>A800-02:e0a</td>
</tr>
<tr>
<td>A800-01</td>
<td>e1a</td>
<td>A800-02:e1a</td>
</tr>
<tr>
<td>A800-01</td>
<td>e2a</td>
<td>ONTAPAI-SW-A:eth1/1</td>
</tr>
<tr>
<td>A800-01</td>
<td>e2b</td>
<td>ONTAPAI-SW-B:eth1/1</td>
</tr>
<tr>
<td>A800-01</td>
<td>e4a</td>
<td>ONTAPAI-SW-A:eth1/2</td>
</tr>
<tr>
<td>A800-01</td>
<td>e4b</td>
<td>ONTAPAI-SW-B:eth1/2</td>
</tr>
<tr>
<td>A800-02</td>
<td>e0M</td>
<td>management switch</td>
</tr>
<tr>
<td>A800-02</td>
<td>e0a</td>
<td>A800-01:e0a</td>
</tr>
<tr>
<td>A800-02</td>
<td>e1a</td>
<td>A800-01:e1a</td>
</tr>
<tr>
<td>A800-02</td>
<td>e2a</td>
<td>ONTAPAI-SW-A:eth1/3</td>
</tr>
<tr>
<td>A800-02</td>
<td>e2b</td>
<td>ONTAPAI-SW-B:eth1/3</td>
</tr>
<tr>
<td>A800-02</td>
<td>e4a</td>
<td>ONTAPAI-SW-A:eth1/4</td>
</tr>
<tr>
<td>A800-02</td>
<td>e4b</td>
<td>ONTAPAI-SW-B:eth1/4</td>
</tr>
</tbody>
</table>

DGX-1 Network Port Connections

Table 6 shows the network ports connected on each of the four DGX-1 servers.

Table 6) NVIDIA DGX-1 server port connections.

<table>
<thead>
<tr>
<th>Controller Name</th>
<th>Port Name</th>
<th>Connected Device and Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>DGX1-A</td>
<td>enp1s0</td>
<td>management switch</td>
</tr>
<tr>
<td>DGX1-A</td>
<td>enp5s0</td>
<td>ONTAPAI-SW-A:eth1/25</td>
</tr>
<tr>
<td>DGX1-A</td>
<td>enp12s0</td>
<td>ONTAPAI-SW-A:eth1/26</td>
</tr>
<tr>
<td>DGX1-A</td>
<td>enp132s0</td>
<td>ONTAPAI-SW-B:eth1/25</td>
</tr>
<tr>
<td>DGX1-A</td>
<td>enp139s0</td>
<td>ONTAPAI-SW-B:eth1/26</td>
</tr>
<tr>
<td>DGX1-B</td>
<td>enp1s0</td>
<td>management switch</td>
</tr>
<tr>
<td>DGX1-B</td>
<td>enp5s0</td>
<td>ONTAPAI-SW-A:eth1/27</td>
</tr>
<tr>
<td>DGX1-B</td>
<td>enp12s0</td>
<td>ONTAPAI-SW-A:eth1/27</td>
</tr>
<tr>
<td>DGX1-B</td>
<td>enp132s0</td>
<td>ONTAPAI-SW-B:eth1/28</td>
</tr>
<tr>
<td>DGX1-B</td>
<td>enp139s0</td>
<td>ONTAPAI-SW-B:eth1/28</td>
</tr>
<tr>
<td>DGX1-C</td>
<td>enp1s0</td>
<td>management switch</td>
</tr>
<tr>
<td>DGX1-C</td>
<td>enp5s0</td>
<td>ONTAPAI-SW-A:eth1/29</td>
</tr>
<tr>
<td>DGX1-C</td>
<td>enp12s0</td>
<td>ONTAPAI-SW-A:eth1/29</td>
</tr>
<tr>
<td>DGX1-C</td>
<td>enp132s0</td>
<td>ONTAPAI-SW-B:eth1/30</td>
</tr>
<tr>
<td>DGX1-C</td>
<td>enp139s0</td>
<td>ONTAPAI-SW-B:eth1/30</td>
</tr>
<tr>
<td>DGX1-D</td>
<td>enp1s0</td>
<td>management switch</td>
</tr>
<tr>
<td>DGX1-D</td>
<td>enp5s0</td>
<td>ONTAPAI-SW-A:eth1/31</td>
</tr>
</tbody>
</table>
5 Solution Configuration Details

This section contains specific configuration details and instructions for completing the configuration of the solution components. The following tasks are described:

- Cisco Nexus 3232C configuration
- NetApp AFF A800 configuration
- NVIDIA DGX-1 server configuration

5.1 Cisco Nexus 3232C Configuration

Basic Setup

Detailed instructions for the installation and basic setup of Cisco Nexus switches can be found in the Cisco Nexus 3000 Series Hardware Installation Guide.

After the switches are configured for management access and cabled according to the cabling guidelines indicated earlier, the following configuration procedures create a configuration similar to the one tested in this solution validation.

Enable Features

The following features must be enabled for this solution:

- Link Aggregation Control Protocol (LACP)
- Link Layer Discovery Protocol (LLDP)

To enable the required Nexus features, complete the following steps:

1. Log in as admin.
2. Run the following commands:

   ```
   config t
   feature lacp
   feature lldp
   ```

Create VLANs

The virtual LANs (VLANs) listed in Table 7 were created for this solution.

Table 7) Cisco Nexus switch VLANs.

<table>
<thead>
<tr>
<th>VLAN ID</th>
<th>VLAN Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>3091</td>
<td>ROCE-VLAN-01</td>
</tr>
<tr>
<td>3092</td>
<td>ROCE-VLAN-02</td>
</tr>
<tr>
<td>3093</td>
<td>ROCE-VLAN-03</td>
</tr>
<tr>
<td>3094</td>
<td>ROCE-VLAN-04</td>
</tr>
<tr>
<td>3111</td>
<td>NFS-VLAN-01</td>
</tr>
<tr>
<td>3112</td>
<td>NFS-VLAN-02</td>
</tr>
</tbody>
</table>
To create the VLANs required for this solution, run the following commands from the global configuration prompt:

```plaintext
vlan 3091
name ROCE-VLAN-01
vlan 3092
name ROCE-VLAN-02
vlan 3093
name ROCE-VLAN-03
vlan 3094
name ROCE-VLAN-04
vlan 3111
name NFS-VLAN-01
vlan 3112
name NFS-VLAN-02
```

Configure QoS

The QoS configuration settings enable the lossless Ethernet transport used by RoCE and define the bandwidth allocation for each traffic class. Use the following procedure to create the QoS configuration:

1. **Create class maps of type qos to apply a class of service (CoS) value to input traffic.**

   ```plaintext
class-map type qos match-all class_RoCE
   match cos 3
   class-map type qos match-all class_control
   match cos 5-7
   ```

2. **Create a policy map of type qos to set the QoS group for each class.**

   ```plaintext
   policy-map type qos RoCE-marking-policy
   class class_control
   set qos-group 7
   class class_RoCE
   set qos-group 3
   class class-default
   set qos-group 0
   ```

3. **Create a queuing type policy map to allocate bandwidth for each traffic class.**

   ```plaintext
   policy-map type queuing RoCE-queue-policy
   class type queuing c-out-8q-q7
   priority level 1
   class type queuing c-out-8q-q6
   bandwidth remaining percent 0
   class type queuing c-out-8q-q5
   bandwidth remaining percent 0
   class type queuing c-out-8q-q4
   bandwidth remaining percent 0
   class type queuing c-out-8q-q3
   bandwidth remaining percent 90
   class type queuing c-out-8q-q2
   bandwidth remaining percent 0
   class type queuing c-out-8q-q1
   bandwidth remaining percent 0
   class type queuing c-out-8q-q-default
   bandwidth remaining percent 10
   ```

4. **Create a network-qos policy map to define the maximum transmission unit (MTU) and priority-based flow control (PFC) pause settings for the relevant queues.**

   ```plaintext
   policy-map type network-qos RoCE-nq-policy
   class type network-qos c-8q-nq7
   mtu 1500
   class type network-qos c-8q-nq-default
   mtu 9216
   class type network-qos c-8q-nq3
   mtu 9216
   pause pfc-cos 3
   ```
5. Apply the network-qos and queuing policies as global service policies.

```
system qos
    service-policy type network-qos RoCE-nq-policy
    service-policy type queuing output RoCE-queue-policy
```

In addition to these QoS configurations, PFC is enabled and the QoS marking policy is applied to each interface connected to a DGX-1 server port. These configuration details are included in the following server port configuration section.

Configure ISL Ports and Port Channels

The two Nexus 3232C switches are connected to each other using four 100Gb Ethernet links. These links are configured into a single port channel for bandwidth aggregation and fault tolerance.

1. To configure the ports and port channel used for Inter-Switch Links on switch A, run the following commands from the global configuration prompt:

```
interface Po1
    description INTER-SWITCH-LINK
    switchport mode trunk
    switchport trunk allowed vlan 3091-3094,3111-3112
    priority-flow-control mode on
    spanning-tree port type network
    mtu 9216
    service-policy type qos input qos_policy
    no shutdown
interface Eth1/11
    description ISL-NEXUS-B:Eth1/11
    switchport mode trunk
    switchport trunk allowed vlan 3091-3094,3111-3112
    priority-flow-control mode on
    mtu 9216
    channel-group 1 mode active
    no shutdown
interface Eth1/12
    description ISL-NEXUS-B:Eth1/12
    switchport mode trunk
    switchport trunk allowed vlan 3091-3094,3111-3112
    priority-flow-control mode on
    mtu 9216
    channel-group 1 mode active
    no shutdown
interface Eth1/13
    description ISL-NEXUS-B:Eth1/13
    switchport mode trunk
    switchport trunk allowed vlan 3091-3094,3111-3112
    priority-flow-control mode on
    mtu 9216
    channel-group 1 mode active
    no shutdown
interface Eth1/14
    description ISL-NEXUS-B:Eth1/14
    switchport mode trunk
    switchport trunk allowed vlan 3091-3094,3111-3112
    priority-flow-control mode on
    mtu 9216
    channel-group 1 mode active
    no shutdown
```

2. To configure the ports and port channel used for Inter-Switch Links on switch B, run the following commands from the global configuration prompt:

```
interface Po1
    description INTER-SWITCH-LINK
    switchport mode trunk
    switchport trunk allowed vlan 3091-3094,3111-3112
    priority-flow-control mode on
```
Configure Storage Ports and Port Channels

Each storage controller is connected to each Nexus 3232C switch with a two-port LACP port channel.

1. To configure Nexus ports for storage system connections on switch A, run the following commands from the global configuration prompt:

```text
interface port-channel11
description A800-01:a11a
switchport mode trunk
switchport trunk allowed vlan 3111-3112
spanning-tree port type edge trunk
mtu 9216
interface port-channel12
description A800-02:a12a
switchport mode trunk
switchport trunk allowed vlan 3111-3112
spanning-tree port type edge trunk
mtu 9216
interface Ethernet1/1
description A800-01:e2a
switchport mode trunk
switchport trunk allowed vlan 3111-3112
spanning-tree port type edge trunk
mtu 9216
channel-group 11 mode active
interface Ethernet1/2
description A800-01:e4a
switchport mode trunk
switchport trunk allowed vlan 3111-3112
spanning-tree port type edge trunk
mtu 9216
channel-group 11 mode active
```
interface Ethernet1/3
description A800-02:e2a
switchport mode trunk
switchport trunk allowed vlan 3111-3112
spanning-tree port type edge trunk
mtu 9216
channel-group 12 mode active
interface Ethernet1/4
description A800-02:e4a
switchport mode trunk
switchport trunk allowed vlan 3111-3112
spanning-tree port type edge trunk
mtu 9216
channel-group 12 mode active

To configure Nexus ports for storage system connections on switch B, run the following commands from the global configuration prompt:

interface port-channel121
description A800-01:a21a
switchport mode trunk
switchport trunk allowed vlan 3111-3112
spanning-tree port type edge trunk
mtu 9216
interface port-channel122
description A800-02:a22a
switchport mode trunk
switchport trunk allowed vlan 3111-3112
spanning-tree port type edge trunk
mtu 9216
channel-group 21 mode active
interface Ethernet1/1
description A800-01:e2b
switchport mode trunk
switchport trunk allowed vlan 3111-3112
spanning-tree port type edge trunk
mtu 9216
channel-group 21 mode active
interface Ethernet1/2
description A800-01:e4b
switchport mode trunk
switchport trunk allowed vlan 3111-3112
spanning-tree port type edge trunk
mtu 9216
channel-group 21 mode active
interface Ethernet1/3
description A800-02:e2b
switchport mode trunk
switchport trunk allowed vlan 3111-3112
spanning-tree port type edge trunk
mtu 9216
channel-group 22 mode active
interface Ethernet1/4
description A800-02:e4b
switchport mode trunk
switchport trunk allowed vlan 3111-3112
spanning-tree port type edge trunk
mtu 9216
channel-group 22 mode active

Configure Host Ports

Ports connected to a DGX-1 server are used as individual ports and are not configured as port channels.

1. To configure ports for DGX-1 connections to switch A, run the following commands from the global configuration prompt:

interface Ethernet1/25
description dgx1_enp5a0
switchport mode trunk
To configure ports for DGX-1 connections to switch B, run the following commands from the global configuration prompt:

```
interface Ethernet1/25
description dgx1_enp132s0
switchport mode trunk
switchport trunk allowed vlan 3091-3094,3111-3112
priority-flow-control mode on
spanning-tree port type edge trunk
mtu 9216
service-policy type qos input RoCE-marking-policy
```

```diff
+interface Ethernet1/26
+description dgx1_enp12s0
+switchport mode trunk
+switchport trunk allowed vlan 3091-3094,3111-3112
+priority-flow-control mode on
+spanning-tree port type edge trunk
+mtu 9216
+service-policy type qos input RoCE-marking-policy
```
5.2 NetApp AFF A800 Configuration

Detailed instructions for installation and basic setup of NetApp AFF A800 storage systems can be found in this AFF A800 documentation.

After storage system setup is complete and the system is cabled according to the cabling guidelines given earlier, the following storage configuration procedures create the configuration as tested in this solution validation.
Manage the Default Broadcast Domain

Broadcast domains are used to group L2-adjacent ports together for failover purposes. Logical interfaces (LIFs) automatically fail over to another port in the same broadcast domain if a link failure occurs. LIFs attempt to fail over to another port on the same controller if possible, or to an appropriate port on another controller if necessary. Because each VLAN represents a separate L2 subnet, a storage broadcast domain is created for each VLAN.

By default, all network ports are included in the default broadcast domain. Network ports used for data services (e2a, e2b, e4a, and e4b) should be removed from the default broadcast domain, leaving just the management network ports (e0M). To perform this task, run the following commands:

```
broadcast-domain remove-ports -broadcast-domain Default -ports A800-01:e2a,A800-01:e2b,A800-01:e4a,A800-01:e4b, A800-02:e2a,A800-02:e2b,A800-02:e4a,A800-02:e4b
```

Create Data Aggregates

This solution was validated using the default aggregate configuration for the AFF A800 in which each controller hosts a single data aggregate created by using 47 disk partitions. If the data aggregates were not created during initial cluster setup, run the following commands to create two data aggregates:

```
aggr create -aggregate agg1_node01 -node A800-01 -diskcount 47
aggr create -aggregate agg1_node02 -node A800-02 -diskcount 47
```

Note that NetApp ONTAP partitions each solid-state drive (SSD) into two small root partitions and two larger data partitions, with one of each allocated to each controller. The root partitions are used for the root aggregate for the controller node, and the larger partitions are used for data aggregates. Root aggregates are created automatically during initial setup, and one root partition is kept as a spare on each controller. When creating data aggregates, leave at least one data partition unused as a spare on each controller to provide redundancy if a drive failure occurs.

Create Interface Groups and Set the MTU

Interface groups are used to bond multiple storage system network ports together for bandwidth aggregation and fault tolerance. Table 8 shows the interface groups that were created on the storage system.

Table 8) NetApp AFF A800 interface group configuration.

<table>
<thead>
<tr>
<th>Controller Name</th>
<th>Interface Groups</th>
<th>Distribution Function</th>
<th>Mode</th>
<th>MTU</th>
<th>Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>A800-01</td>
<td>a11a</td>
<td>Sequential (round-robin)</td>
<td>multimode_lacp</td>
<td>9000</td>
<td>e2a,e4a</td>
</tr>
<tr>
<td>A800-01</td>
<td>a21a</td>
<td>Sequential (round-robin)</td>
<td>multimode_lacp</td>
<td>9000</td>
<td>e2b,e4b</td>
</tr>
<tr>
<td>A800-02</td>
<td>a12a</td>
<td>Sequential (round-robin)</td>
<td>multimode_lacp</td>
<td>9000</td>
<td>e2a,e4a</td>
</tr>
<tr>
<td>A800-02</td>
<td>a22a</td>
<td>Sequential (round-robin)</td>
<td>multimode_lacp</td>
<td>9000</td>
<td>e2b,e4b</td>
</tr>
</tbody>
</table>

Run the following commands to create the interface groups (ifgrps) and configure the MTU:

```
ifgrp create -node A800-01 -ifgrp a11a -distr-func sequential -mode multimode_lacp
ifgrp add-port -node A800-01 -ifgrp a11a -port e2a
ifgrp add-port -node A800-01 -ifgrp a11a -port e4a
ifgrp create -node A800-01 -ifgrp a21a -distr-func sequential -mode multimode_lacp
ifgrp add-port -node A800-01 -ifgrp a21a -port e2b
ifgrp add-port -node A800-01 -ifgrp a21a -port e4b
ifgrp create -node A800-02 -ifgrp a12a -distr-func sequential -mode multimode_lacp
ifgrp add-port -node A800-02 -ifgrp a12a -port e2a
ifgrp add-port -node A800-02 -ifgrp a12a -port e4a
ifgrp create -node A800-02 -ifgrp a22a -distr-func sequential -mode multimode_lacp
ifgrp add-port -node A800-02 -ifgrp a22a -port e2b
ifgrp add-port -node A800-02 -ifgrp a22a -port e4b
```
network interface create -node A800-01 -port a11a -mtu 9000
network interface create -node A800-01 -port a12a -mtu 9000
network interface create -node A800-02 -port a12a -mtu 9000
network interface create -node A800-02 -port a22a -mtu 9000

Create VLAN ports and set MTU

Create Storage VLANs

Two separate NFS VLANs were used in this solution to create two independent paths through the network for each host if needed. Each VLAN was created on each of the two interface groups on each controller, providing a total of four possible failover targets for each VLAN. To configure the storage VLANs used in the validation of this solution, run the following commands:

network port vlan create -node A800-01 -vlan-name a11a-3111
network port vlan create -node A800-01 -vlan-name a21a-3111
network port vlan create -node A800-01 -vlan-name a11a-3112
network port vlan create -node A800-01 -vlan-name a21a-3112
network port vlan create -node A800-02 -vlan-name a12a-3111
network port vlan create -node A800-02 -vlan-name a22a-3111
network port vlan create -node A800-02 -vlan-name a12a-3112
network port vlan create -node A800-02 -vlan-name a22a-3112

Create or Modify Broadcast Domains

To create broadcast domains for the newly created VLANs and assign the appropriate ports, run the following commands:

broadcast-domain create -broadcast-domain NFS-A -mtu 9000
broadcast-domain create -broadcast-domain NFS-B -mtu 9000

Create an SVM

Data access for ONTAP systems is provided by a storage virtual machine (SVM). A data SVM must be created with the appropriate protocols before hosts can access the storage system. To create an SVM with the NFS protocol and enable access to the data aggregates, run the following commands:

vserver create -vserver AI-SVM -rootvolume AI_SVM_rootvol -aggregate aggr1_node01 -rootvolumesecurity-style unix
vserver modify -vserver AI-SVM -aggr-list aggr1_node01,aggr1_node02 -allowed-protocols nfs

Create LIFs

LIFs are the IP addresses that client servers use to mount NFS exports. For this solution, a single LIF is created on each interface group on each controller, providing for discrete potential mount points. To create the LIFs used in this solution, run the following commands:

network interface create -vserver AI-SVM -lif NFS-01-A -role data -data-protocol nfs -home-node A800-01 -home-port a11a-3111 -address 172.31.11.11 -netmask 255.255.255.0 -status-admin up
network interface create -vserver AI-SVM -lif NFS-01-B -role data -data-protocol nfs -home-node A800-01 -home-port a21a-3111 -address 172.31.12.11 -netmask 255.255.255.0 -status-admin up
network interface create -vserver AI-SVM -lif NFS-02-A -role data -data-protocol nfs -home-node A800-02 -home-port a12a-3111 -address 172.31.11.12 -netmask 255.255.255.0 -status-admin up
network interface create -vserver AI-SVM -lif NFS-02-B -role data -data-protocol nfs -home-node A800-02 -home-port a22a-3112 -address 172.31.12.12 -netmask 255.255.255.0 -status-admin up
Create a FlexGroup Volume

A single NetApp ONTAP FlexGroup volume with four constituents per node was created to host the ImageNet data used in this validation. To create the FlexGroup volume, run the following command:

```
volume show -vserver AI-SVM -junction
flexgroup deploy -size 10TB -type RW -space-guarantee none -foreground true -vserver AI-SVM -volume imagenet_dataset
```

Create an Export Policy

Export policies determine which client hosts can access the storage system. To configure an export policy to allow the DGX-1 servers to mount the dataset using NFS, run the following commands:

```
vserver export-policy rule create -vserver AI-SVM -policyname default -protocol nfs -clientmatch 172.31.11.0/24 -rorule sys -rwrule sys -superuser sys -allow-suid false
vserver export-policy rule create -vserver AI-SVM -policyname default -protocol nfs -clientmatch 172.31.12.0/24 -rorule sys -rwrule sys -superuser sys -allow-suid false
vserver nfs create -access true -v3 enabled
```

5.3 NVIDIA DGX-1 Server Configuration

Detailed instructions for initial installation of the DGX-1 server can be found in the DGX-1 User Guide. After the initial installation and setup of the servers is complete, the following procedure completes the configuration necessary for this solution.

1. Log in to the DGX-1 server using the default credentials (or authentication credentials set during the DGX-1 installation step) and set up Secure Shell (SSH) access to the root user.

```
sudo passwd root
[sudo] password for dgxuser:
Enter new UNIX password:
Retype new UNIX password:
passwd: password updated successfully
```

2. Edit the `/etc/ssh/sshd_config` file to allow root user login using SSH.

```
PermitRootLogin yes
#PermitRootLogin prohibit-password
```

3. Verify that the default Canonical and NVIDIA repositories are configured.

```
/etc/apt/sources.list.d/dgx.list

deb http://international.download.nvidia.com/dgx/repos/ xenial main multiverse restricted universe
```

```
/etc/apt/sources.list.d/docker.list

deb [arch=amd64] https://download.docker.com/linux/ubuntu xenial stable
```

```
/etc/apt/sources.list

deb http://security.ubuntu.com/ubuntu xenial-security main
deb http://security.ubuntu.com/ubuntu xenial-security universe
deb http://security.ubuntu.com/ubuntu xenial-security multiverse
deb http://archive.ubuntu.com/ubuntu/ xenial main multiverse universe
deb http://archive.ubuntu.com/ubunsudop tu/ xenial-updates main multiverse universe
```

Note: In an air-gapped environment, make sure that these repositories are mirrored and `/etc/apt/sources.list` and `sources.list.d` are configured appropriately.

4. Update the packages from the repositories.
5. Verify the DGX-1 release.

```bash
grep VERSION /etc/dgx-release
DGX_SWBUILD_VERSION="3.1.6"
```

6. Configure the NTP server to make sure that all components are in time synchronization.

```bash
sudo apt-get update
```

7. Configure the timeserver appropriate to your environment in `/etc/ntp.conf`.

```bash
server ntp1.lab.netapp.com
server ntp2.lab.netapp.com
server ntp3.lab.netapp.com
```

8. Restart the NTP server.

```bash
systemctl restart ntp
```

Convert the InfiniBand Adapters to 100GbE

1. Download the Mellanox software tools package.

2. Untar the downloaded package.

```bash
tar -xvf mft-4.6.0-48-x86_64-deb.gz
```

3. Run `install.sh` from the `mft-4.6.0-48-x86_64-deb` directory.

```bash
root@wdl-dgx4:/home/dgxuser/mft-4.6.0-48-x86_64-deb# ./install.sh
-I- Removing all installed mft packages: mft kernel-mft-dkms
-I- Installing package: /home/dgxuser/mft-4.6.0-48-x86_64-deb/SDEBS/kernel-mft-dkms_4.6.0-48_all.deb
-I- Installing package: /home/dgxuser/mft-4.6.0-48-x86_64-deb/DEBS/mft-4.6.0-48.amd64.deb
-I- In order to start mst, please run "mst start".
```

4. Start the Mellanox tools.

```bash
root@wdl-dgx4:/home/dgxuser/mft-4.6.0-48-x86_64-deb# mst start
Starting MST (Mellanox Software Tools) driver set
Loading MST PCI module - Success
Loading MST PCI configuration module - Success
Create devices
Unloading MST PCI module (unused) - Success
```

5. Convert the InfiniBand ports to Ethernet.

```bash
mlxconfig -y -d /dev/mst/mt4115_pciconf0 set LINK_TYPE_P1=2
mlxconfig -y -d /dev/mst/mt4115_pciconf1 set LINK_TYPE_P1=2
mlxconfig -y -d /dev/mst/mt4115_pciconf2 set LINK_TYPE_P1=2
mlxconfig -y -d /dev/mst/mt4115_pciconf3 set LINK_TYPE_P1=2
```

6. Verify that the configuration changes have been applied.

```bash
mlxconfig query |grep "LINK_TYPE\|PCI\ device"
PCI device: /dev/mst/mt4115_pciconf3
  LINK_TYPE_P1 ETH(2)
PCI device: /dev/mst/mt4115_pciconf2
  LINK_TYPE_P1 ETH(2)
PCI device: /dev/mst/mt4115_pciconf1
  LINK_TYPE_P1 ETH(2)
PCI device: /dev/mst/mt4115_pciconf0
  LINK_TYPE_P1 ETH(2)
```

7. Reboot the server to make the changes persist.

```bash
sudo reboot
```
Note: Comprehensive instructions for changing the port characteristics from InfiniBand to Ethernet can be found in the DGX Systems documentation.

Configure the 100GbE Interfaces

The 100GbE interfaces are configured for interconnectivity among DGX-1 servers to carry RoCE traffic and connectivity to the AFF A800 storage systems. Table 9 shows which VLANs are tagged on the corresponding interfaces.

Table 9) NVIDIA DGX-1 physical interfaces and VLANs.

<table>
<thead>
<tr>
<th>Physical Interface</th>
<th>VLAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>enp5s0</td>
<td>ROCE-VLAN-01</td>
</tr>
<tr>
<td>enp12s0</td>
<td>ROCE-VLAN-02</td>
</tr>
<tr>
<td>enp132s0</td>
<td>ROCE-VLAN-03</td>
</tr>
<tr>
<td>enp139s0</td>
<td>ROCE-VLAN-04</td>
</tr>
</tbody>
</table>

Two 100GbE interfaces are bonded together in an active-passive configuration and are tagged with an NFS VLAN, as indicated in Table 10.

Table 10) NVIDIA DGX-1 bonded interfaces and VLANs.

<table>
<thead>
<tr>
<th>Bonded Interface</th>
<th>Physical Interfaces</th>
<th>VLAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>bond0</td>
<td>enp5s0, enp132s0</td>
<td>NFS-VLAN-01</td>
</tr>
<tr>
<td>bond1</td>
<td>enp12s0, enp139s0</td>
<td>NFS-VLAN-02</td>
</tr>
</tbody>
</table>

To configure the host networking, complete the following steps:

1. Install the corresponding packages.

```bash
sudo apt-get install vlan ifenslave
```

2. Make sure that the VLAN and bonding modules are loaded during the boot.

```bash
echo "8021q" >> /etc/modules
echo "bonding" >> /etc/modules
```

Note: You might need to switch to the root user to run these commands.

3. Modify /etc/network/interfaces.

```bash
#!/ This file describes the network interfaces available on your system
#!/ and how to activate them. For more information, see interfaces(5).

source /etc/network/interfaces.d/*

# The loopback network interface
auto lo
iface lo inet loopback

# The primary network interface
auto enp1s0f0
iface enp1s0f0 inet static
  address 172.17.213.110
  netmask 255.255.252.0
  network 172.17.212.0
  broadcast 172.17.215.255
  gateway 172.17.212.1
# dns-* options are implemented by the resolvconf package, if installed
dns-nameservers 172.19.2.30 172.19.3.32
```
auto bond0
iface bond0 inet manual
 bond-mode active-backup
 bond-miimon 100
 bond-slaves none

auto enp5s0
iface enp5s0 inet manual
 bond-master bond0
 bond-primary enp5s0

auto enp132s0
iface enp132s0 inet manual
 bond-master bond0

auto bond1
iface bond1 inet manual
 bond-mode active-backup
 bond-miimon 100
 bond-slaves none

auto enp12s0
iface enp12s0 inet manual
 bond-master bond1
 bond-primary enp12s0

auto enp139s0
iface enp139s0 inet manual
 bond-master bond1

auto enp5s0.3091
iface enp5s0.3091 inet static
 address 172.31.91.24
 netmask 255.255.255.0
 mtu 9000
 vlan-raw-device enp5s0

auto enp12s0.3092
iface enp12s0.3092 inet static
 address 172.31.92.24
 netmask 255.255.255.0
 mtu 9000
 vlan-raw-device enp12s0

auto enp132s0.3093
iface enp132s0.3093 inet static
 address 172.31.93.24
 netmask 255.255.255.0
 mtu 9000
 vlan-raw-device enp132s0

auto enp139s0.3094
iface enp139s0.3094 inet static
 address 172.31.94.24
 netmask 255.255.255.0
 mtu 9000
 vlan-raw-device enp139s0

auto bond0.3111
iface bond0.3111 inet static
 address 172.31.11.24
 netmask 255.255.255.0
 mtu 9000

auto bond1.3112
iface bond1.3112 inet static
 address 172.31.12.24
Mount the Networking

To restart the networking for the changes to take effect:

```
  systemctl restart networking
```

Enable PFC on priority 3 on all the 100GbE interfaces:

```
  mlxnx_qos -i enp5s0 --pfc 0,0,0,0,0,0,0,0
  mlxnx_qos -i enp12s0 --pfc 0,0,0,0,0,0,0,0
  mlxnx_qos -i enp13s0 --pfc 0,0,0,0,0,0,0,0
```

Mount the NFS Storage System

To provide deterministic performance and failover behavior, each host uses a specific IP address on the AFF A800 storage system to mount the FlexGroup data volume. To mount the volumes on each host, run the following commands:

```
# On DGX-1 server 1
  sudo mount -t nfs -o vers=3 172.31.11.11:/fgvolume [path in DGX-1 server 1]
# On DGX-1 server 2
  sudo mount -t nfs -o vers=3 172.31.11.12:/fgvolume [path in DGX-1 server 2]
# On DGX-1 server 3
  sudo mount -t nfs -o vers=3 172.31.12.11:/fgvolume [path in DGX-1 server 3]
# On DGX-1 server 4
  sudo mount -t nfs -o vers=3 172.31.12.12:/fgvolume [path in DGX-1 server 4]
```

Note: As additional DGX-1 systems are added, the mount points are set in a round-robin manner.

Install and Upgrade Docker

DGX-1 systems come with Docker pre-installed, but it might not be the latest version available.

1. To uninstall the existing version of Docker, install the latest version, and add the current user to the Docker group, run the following commands:

```
  sudo apt-get remove docker docker-engine docker.io
  sudo apt-get install docker-ce
  sudo usermod -a -G docker $USER
```

2. Restart the Docker engine.

```
  systemctl restart docker
```

Note: If users are not added to the Docker group, sudo privilege elevation is required to run any docker commands.

Install and Upgrade NVIDIA Docker

DGX-1 servers also come with the nvidia-docker extension package installed, but this should be updated during installation as well.

1. To remove the existing version of nvidia-docker, run the following commands:

```
  docker volume ls -q -f driver=nvidia-docker | xargs -r -I{} -n1 docker ps -q -a -f volume={} | xargs -r docker rm -f
  sudo apt-get purge -y nvidia-docker
```

2. To add the nvidia-docker repository and download and install the latest version, run the following commands:

```
  curl -s -L https://nvidia.github.io/nvidia-docker/gpgkey | \
  sudo apt-key add -
  distribution=$(./etc/os-release;echo $ID$VERSION_ID)
  sudo apt-get update
  sudo apt-get install docker-ce
```

Note: If users are not added to the Docker group, sudo privilege elevation is required to run any docker commands.

 installs and updates the NVIDIA Docker extension package.
curl -s -L https://nvidia.github.io/nvidia-docker/$distribution/nvidia-docker.list | sudo tee /etc/apt/sources.list.d/nvidia-docker.list
sudo apt-get update
sudo apt-get install -y nvidia-docker2

3. Modify the storage driver to overlay2.

sudo vi /etc/systemd/system/docker.service.d/docker-override.conf

[Service]
ExecStart=/usr/bin/dockerd -H fd:// -s overlay2
Limit MEMLOCK=infinity
LimitSTACK=67108864

4. After the new version of nvidia-docker is installed, run the following commands to restart the Docker daemon:

sudo systemctl restart docker

5. Validate the NVIDIA runtime by running the latest nvidia/cuda image.

docker run --runtime=nvidia --rm nvidia/cuda nvidia-smi

Download ML Framework Containers from the NVIDIA GPU Cloud

NVIDIA GPU Cloud (NGC) provides researchers and data scientists with access to a comprehensive catalog of GPU-optimized software tools for DL and HPC that take full advantage of NVIDIA GPUs. The NGC container registry features NVIDIA tuned, tested, certified, and maintained containers for the top DL frameworks. See the DGX Container Registry User Guide to obtain official NVIDIA containers.

To improve the performance of distributed training using multiple DGX-1 servers, an additional package called Horovod is installed in the containers. Horovod updates variables through the NVIDIA Collective Communications Library (NCCL) and uses Open MPI for communication between DGX-1 servers. Open MPI sends commands across SSH, but the default NVIDIA containers do not have openssh-server and openssh-client installed. To add Horovod, update Open MPI and add the SSH client and server components. The following Docker file was used to create the containers used in this validation with the default NVIDIA TensorFlow container as the starting point.

FROM nvcr.io/nvidia/tensorflow:18.04-py2

Install required packages
RUN apt-get update && apt-get install -y --no-install-recommends \
 libibverbs1 \ libibverbs-dev \ libmlx5-1 \ librdma-dev \ librdmacll \ openssh-client \ openssh-server \ infiniband-diags \ rdmacm-utils \ libmthca-dev \ ibutils \ ibverbs-utils \ \ # (Optional) Install a newer version of OpenMPI
ENV OPENMPI_VERSION 3.1.0
RUN wget -q -O - %(OPENMPI_URL) | tar -xzf - && \ od openmpi-%(OPENMPI_VERSION) && \ .configure --enable-orterun-prefix-by-default \ --with-cuda --with-verbs //

 --prefix=/usr/local/mpi --disable-getpwuid & &
 make -j"$(nproc)" install & &
 cd .. & & rm -rf openmpi-${OPENMPI_VERSION}
 ENV PATH /usr/local/mpi/bin:$PATH

 # Create SSH authentication and Disable SSH host key checking
 RUN mkdir -p /var/run/sshd & &
 mkdir -p /root/.ssh & &
 echo " StrictHostKeyChecking no" >> /etc/ssh/sshd_config & &
 echo " UserKnownHostsFile /dev/null" >> /etc/ssh/sshd_config & &
 echo " LogLevel quiet" >> /etc/ssh/sshd_config & &
 mkdir -p /root/.ssh & &
 echo "HOST " > /root/.ssh/config & &
 ssh-keygen -t rsa -b 4096 -f /root/.ssh/id_rsa -N "" & &
 cp /root/.ssh/id_rsa.pub /root/.ssh/authorized_keys & &
 chmod 700 /root/.ssh & &
 chmod 600 /root/.ssh/*

 # Update libraries
 RUN ldconfig

6 Solution Verification

This section contains information about the tests used to verify that the infrastructure is installed and configured correctly. Each of the tests in this section should be performed to make sure that the system operates as expected.

6.1 Network Validation

Perform the following tests to make sure that the network is configured correctly for each of the traffic types used.

RoCE Network Validation Test

This test verifies that the DGX-1 servers can communicate with each other using the RoCE network connections.

1. Make sure that all 100Gb network interfaces have been configured by using the procedure in the section “Configure the 100GbE Interfaces,” earlier in this document.

2. Run the Mellanox bandwidth validation tool to perform I/O over each of the 100Gb Ethernet links used for RoCE communications:

 a. Run the following command on one server:

      ```
      ib_send_bw -d mlx5_0 -i 1 -S 3 -F --report_gbits
      ```

 b. Run the following command on the second server:

      ```
      ib_send_bw -d mlx5_0 -i 1 -S 3 -F --report_gbits 172.31.91.24
      ```

 c. Make sure that an average bandwidth of over 95% is achieved.

<table>
<thead>
<tr>
<th>Send BW Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dual-port : OFF</td>
</tr>
<tr>
<td>Device : mlx5_0</td>
</tr>
<tr>
<td>Number of qps : 1</td>
</tr>
<tr>
<td>Transport type : IB</td>
</tr>
<tr>
<td>Connection type : RC</td>
</tr>
<tr>
<td>Using SRQ : OFF</td>
</tr>
<tr>
<td>TX depth : 128</td>
</tr>
<tr>
<td>CQ Moderation : 100</td>
</tr>
<tr>
<td>Mtu : 4096[B]</td>
</tr>
<tr>
<td>Link type : Ethernet</td>
</tr>
<tr>
<td>GID index : 3</td>
</tr>
<tr>
<td>Max inline data : 0[B]</td>
</tr>
<tr>
<td>rdma_cm QPs : OFF</td>
</tr>
</tbody>
</table>

27 NetApp ONTAP AI, Powered by NVIDIA © 2018 NetApp, Inc. All rights reserved.
Data ex. method : Ethernet

local address: LID 0000 QPN 0x00d7 PSN 0x7a569d
GID: 00:00:00:00:00:00:00:00:00:00:255:255:172:31:91:23
remote address: LID 0000 QPN 0x01ca PSN 0x5578f6
GID: 00:00:00:00:00:00:00:00:00:00:255:255:172:31:91:24

65536 1000 96.89 96.88 0.184786

d. On the appropriate network switch, make sure that the QoS counters for QoS group 3 are incrementing as RoCE traffic crosses the network.

```bash
sh queueing interface eth1/25
x6-3232-sw1# sh queueing interface eth1/25

slot 1

Egress Queuing for Ethernet1/25 [System]

QoS-Group# Bandwidth% PrioLevel Min Shape Max Units

---

| 7   | -     | 1     | -               | -       | 6 (D) |
| 6   | 0     | -     | -               | -       | 6 (D) |
| 5   | 0     | -     | -               | -       | 6 (D) |
| 4   | 0     | -     | -               | -       | 6 (D) |
| 3   | 90    | -     | -               | -       | - (U) |
| 2   | 0     | -     | -               | -       | 6 (D) |
| 1   | 0     | -     | -               | -       | 6 (D) |
| 0   | 10    | -     | -               | -       | 6 (D) |

<table>
<thead>
<tr>
<th>QOS GROUP 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unicast</td>
</tr>
<tr>
<td>--------------------------------</td>
</tr>
<tr>
<td>Tx Pkts</td>
</tr>
<tr>
<td>Tx Byts</td>
</tr>
<tr>
<td>Dropped Pkts</td>
</tr>
<tr>
<td>Dropped Byts</td>
</tr>
<tr>
<td>Q Depth Byts</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>QOS GROUP 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unicast</td>
</tr>
<tr>
<td>--------------------------------</td>
</tr>
<tr>
<td>Tx Pkts</td>
</tr>
<tr>
<td>Tx Byts</td>
</tr>
<tr>
<td>Dropped Pkts</td>
</tr>
<tr>
<td>Dropped Byts</td>
</tr>
<tr>
<td>Q Depth Byts</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>QOS GROUP 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unicast</td>
</tr>
<tr>
<td>--------------------------------</td>
</tr>
<tr>
<td>Tx Pkts</td>
</tr>
<tr>
<td>Tx Byts</td>
</tr>
<tr>
<td>Dropped Pkts</td>
</tr>
<tr>
<td>Dropped Byts</td>
</tr>
<tr>
<td>Q Depth Byts</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>QOS GROUP 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unicast</td>
</tr>
<tr>
<td>--------------------------------</td>
</tr>
</tbody>
</table>
```
Network QoS Validation Test

1. Verify that the network switches have been configured according to the previous procedure.
2. Verify that all 100Gb network interfaces have been configured according to the previous procedure.
3. Install and run the iperf3 utility on each server to generate TCP/IP network traffic.
 a. Install iperf3.

 apt-get install iperf3

 b. Run the following command on one server to start a listener daemon:

 iperf3 -s -p 7501 -D

 c. Run the following command on the second server:

 iperf3 -c 172.31.94.23 -t 30 -l 1M -p 7501

 d. Verify that an average bandwidth of approximately 45Gb/s is achieved.

   ```
   [ ID ] Interval          Transfer     Bandwidth       Retr
   [  4 ]   0.00-30.00 sec  161 GBytes  46.1 Gbits/sec  1956             sender
   [  4 ]   0.00-30.00 sec  161 GBytes  46.1 Gbits/sec                  receiver
   ```

4. Run the iperf3 test and the ib_send_bw test at the same time.

6.2 Storage System Validation

This test is intended to validate that the DGX-1 servers can access data on the NetApp AFF A800 storage system with suitable performance. This test uses the open-source I/O generator FIO to perform I/O operations like those produced by the training workload. To perform this test, complete the following steps.

e. Repeat the previous steps with each server and interface combination to validate the inter-GPU bandwidth for each server.
 - DGX1-A mlx5_0 -> DGX1-B mlx5_0
 - DGX1-A mlx5_0 -> DGX1-C mlx5_0
 - DGX1-A mlx5_0 -> DGX1-D mlx5_0
 - DGX1-A mlx5_1 -> DGX1-B mlx5_1
 - DGX1-A mlx5_1 -> DGX1-C mlx5_1
 - DGX1-A mlx5_1 -> DGX1-D mlx5_1
 - DGX1-A mlx5_2 -> DGX1-B mlx5_2
 - DGX1-A mlx5_2 -> DGX1-C mlx5_2
 - DGX1-A mlx5_2 -> DGX1-D mlx5_2
 - DGX1-A mlx5_3 -> DGX1-B mlx5_3
 - DGX1-A mlx5_3 -> DGX1-C mlx5_3
 - DGX1-A mlx5_3 -> DGX1-D mlx5_3
1. **Install FIO software on the DGX-1.**

 `Apt-get install fio`

2. **Create an FIO job file called `test.fio` with the following contents:**

   ```
   [global]
   rw=read
   size=51200m
directory=/fgvolume #This should be set to a directory on the external storage NFS mount
bs=64k
   [job1]
   ```

 This file creates a single job that reads 50GB with a single thread performing 100% sequential reads at 64k block size to the directory specified. Additional information about FIO can be found in the [FIO documentation](#).

3. **On each DGX-1 server, run the following FIO command.**

 `Fio test.fio`

4. **Run the same FIO command on all four servers simultaneously to validate concurrent bandwidth for each server.**

 The expected outcome of this test is storage bandwidth of roughly 1100MBps to 1200MBps per DGX-1 server as shown in the following output and 4GBps to 5GBps for all four DGX-1 servers combined.

   ```
   root@wdl-dgx3:-# fio test.fio
   job1: (g=0): rw=read, bs=64K-64K/64K-64K/64K-64K, ioengine=sync, iodepth=1
   fio-2.2.10
   Starting 1 process
   job1: Laying out IO file(s) (1 file(s) / 51200MB)
   Jobs: 1 (f=1): [R(1)] [100.0% done] [2003MB/0KB/0KB /s] [32.4K/0/0 iops] [eta 00m:00s]
   job1: (groupid=0, jobs=1): err= 0: pid=29804: Thu Sep  6 07:53:08 2018
   read : io=51200MB, bw=1944.3MB/s, iops=31108, runt= 26334msec
   clat (usec): min=5, max=2614, avg=30.81, stdev=60.21
   lat (usec): min=5, max=2614, avg=30.85, stdev=60.21
   clat percentiles (usec):
   |  1.00th=[    5],  5.00th=[    5], 10.00th=[   6], 20.00th=[   6],
   |  30.00th=[   10], 40.00th=[   10], 50.00th=[   11], 60.00th=[   11],
   |  70.00th=[   18], 80.00th=[   32], 90.00th=[   65], 95.00th=[  116],
   |  99.00th=[  306], 99.50th=[  338], 99.90th=[  386], 99.95th=[  398],
   |  99.99th=[ 1048],
   bw (MB /s): min=0, max= 2012, per=100.00%, avg=1962.81, stdev=277.60
   lat (usec): 10=28.50%, 20=44.52%, 50=13.40%, 100=8.17%, 250=2.47%
   lat (usec): 500=2.92%, 750=0.01%, 1000=0.01%
   lat (msec): 2=0.01%, 4=0.01%
   cpu          : usr=2.32%, sys=57.60%, ctx=94831, majf=0, minf=37
   IO depths    : 1=100.0%, 2=0.0%, 4=0.0%, 8=0.0%, 16=0.0%, 32=0.0%, >64=0.0%
   submit       : 0=0.0%, 4=100.0%, 8=0.0%, 16=0.0%, 32=0.0%, 64=0.0%, >64=0.0%
   complete     : 0=0.0%, 4=100.0%, 8=0.0%, 16=0.0%, 32=0.0%, 64=0.0%, >64=0.0%
   issued       : total=819200/w=0/d=0, short=r=0/w=0/d=0, drop=r=0/w=0/d=0
   latency      : target=0, window=0, percentile=100.00%, depth=1
   Run status group 0 (all jobs):
   READ: io=51200MB, aggrb=1944.3MB/s, minb=1944.3MB/s, maxb=1944.3MB/s, mint=26334msec,
   maxt=26334msec
   Disk stats (read/write):
   sdb: ios=203422/8, merge=0/1, ticks=30712/0, in_queue=30704, util=78.70%```

6.3 **Basic TensorFlow Validation**

This section describes how the solution was validated through four popular convolutional neural network (CNN) models on TensorFlow. Table 11 describes the software versions that were used in this testing, and Table 12 and Table 13 show the TensorFlow settings that were used.
Table 11) Validated software versions.

<table>
<thead>
<tr>
<th>Software</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>NetApp ONTAP</td>
<td>9.4</td>
</tr>
<tr>
<td>Cisco NX-OS switch firmware</td>
<td>7.0(3)6(1)</td>
</tr>
<tr>
<td>NVIDIA DGX-1 operating system</td>
<td>Ubuntu 16.04 LTS</td>
</tr>
<tr>
<td>Docker container platform</td>
<td>18.03.1-ce [9ee9f40]</td>
</tr>
<tr>
<td>Container version</td>
<td>Netapp_1.7.0.2 based on nvcr.io/nvidia/tensorflow:18.04-py2</td>
</tr>
<tr>
<td>Machine learning framework</td>
<td>TensorFlow 1.7.0</td>
</tr>
<tr>
<td>Horovod</td>
<td>0.11.3</td>
</tr>
<tr>
<td>Open MPI</td>
<td>3.1.0</td>
</tr>
<tr>
<td>Benchmark software</td>
<td>TensorFlow benchmarks [1b1ca8a]</td>
</tr>
</tbody>
</table>

Table 12) TensorFlow general benchmark settings.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>batch_group_size</td>
<td>20</td>
</tr>
<tr>
<td>update_method</td>
<td>horovod</td>
</tr>
<tr>
<td>forward_only</td>
<td>True (only if doing inferencing test; false otherwise)</td>
</tr>
<tr>
<td>distortions</td>
<td>False</td>
</tr>
<tr>
<td>num_intra_threads</td>
<td>1</td>
</tr>
<tr>
<td>num_inter_threads</td>
<td>10</td>
</tr>
<tr>
<td>datasets_use_prefetch</td>
<td>True</td>
</tr>
<tr>
<td>prefetch_buffer_size</td>
<td>20</td>
</tr>
<tr>
<td>use_dataset</td>
<td>True</td>
</tr>
<tr>
<td>data_name</td>
<td>imagenet</td>
</tr>
<tr>
<td>use_fp16</td>
<td>True (only if testing on Tensor Core)</td>
</tr>
<tr>
<td>use_tf_layers</td>
<td>False (only if testing on Tensor Core)</td>
</tr>
<tr>
<td>force_gpu_compatible</td>
<td>True</td>
</tr>
<tr>
<td>data_format</td>
<td>NCHW</td>
</tr>
<tr>
<td>device</td>
<td>gpu</td>
</tr>
<tr>
<td>num_gpu</td>
<td>1 (required for Horovod, for which Open MPI controls the overall number of GPUs)</td>
</tr>
<tr>
<td>datasets_num_private_threads</td>
<td>See Table 13</td>
</tr>
</tbody>
</table>
Set Up and Run Basic Tests

The following example demonstrates the ResNet-50 CNN model with a batch size of 256 on four DGX-1 servers. Among the four servers, one is chosen as the primary worker to initialize the command. The other three are secondary workers that listen only to a specific port and wait for the command from the primary worker.

1. Run the following command on the server chosen as the primary:

```bash
docker run -it --runtime=nvidia --privileged --network-host \
--ulimit memlock=-1 --shm-size=1g --ulimit stack=67108864 \
-v ~/tensorflow:/tensorflow \
--volumes-from netapp_tf_1.7.0.2 \
--allow-run-as-root --bind-to none --map-by slot \
--rm netapp_tf_1.7.0.2 \
mpirun -allow-run-as-root -bind-to none -map-by slot \
-np 32 -H wdl-dgx1:8,wdl-dgx2:8,wdl-dgx3:8,wdl-dgx4:8 \
-x NCCL_DEBUG=INFO -x LD_LIBRARY_PATH -x PATH -mca pml ob1 \
-mca btl ^openib -mca btl_tcp_if_include enp1s0f0 \# use TCP for MPI \
-x NCCL_IB_HCA=mlx5 \# assign the interface for NCCL \
-x NCCL_NET_GDR_READ=1 \# RoCE receive to memory directly \
-x NCCL_IB_SL=3 -x NCCL_IB_GID_INDEX=3 \# RoCE CoS priority \
-mca plm_rsh_agent ssh -mca plm_rsh_args "-p 12345" \# ssh port 12345 \
python tf_cnn_benchmarks.py --model=resnet50 --batch_size=256 \
--batch_group_size=20 --num_epochs=4 --no_distortions \
--num_gpus=1 --device=gpu --force_gpu_compatible=True \
--data_format=NCHW --use_fp16=True --use_tf_layers=False \
--data_name=imagenet --use_datasets=True \
--data_dir=/mnt/mldata/mldata_single/imagenet_1 \
--num_intra_threads=1 --num_inter_threads=10 \
--variable_update=horovod --horovod_device=gpu \
--datasets_prefetch_buffer_size=20 --datasets_num_private_threads=2
```
2. Run the following command on the secondary servers:

```
docker run -it --runtime=nvidia --privileged --network=host --ulimit memlock=-1 --shm-size=1g --ulimit stack=67108864 -v ~/tensorflow:/tensorflow -v /mnt:/mnt --rm netapp_tf_1.7.0.2 bash -c "/usr/sbin/sshd -p 12345; sleep infinity"
```

## Conclusion

This NetApp Verified Architecture provides a reference design for building AI training infrastructure using NVIDIA DGX-1 GPU servers, NetApp AFF A800 all-flash storage systems, and Cisco Nexus 3000 100GbE network switches. By using standard data center components, this solution eliminates the cost and complexity of InfiniBand solutions and provides enterprise IT departments with a blueprint for deploying standardized AI training infrastructure.

This solution demonstrates that the AFF A800 can easily support the workload of eight or more DGX-1 servers. Customers can also implement this architecture using NetApp AFF A220, AFF A300, or AFF A700 storage systems and fewer DGX-1 servers, or by using storage clusters to support large DGX-1 farms.

This document contains detailed deployment and validation instructions for the ONTAP AI solution as tested in the lab. Although specific results might vary because of numerous factors, customers can be confident that by deploying the infrastructure using this guidance, they can achieve performance similar to that demonstrated in the ONTAP AI Design Guide.

## Acknowledgments

We gratefully acknowledge the contributions that were made to this NetApp Verified Architecture by our esteemed colleagues from NVIDIA: Darrin Johnson, Tony Paikeday, Robert Sohigian, and James Mauro. We could not have completed this study without the support and guidance of our key NetApp team members Sundar Ranganathan, Sung-Han Lin, and Kesari Mishra.

Our sincere appreciation and thanks go to all the individuals who provided insight and expertise that greatly assisted in the research for this paper.

## Where to Find Additional Information

To learn more about the information described in this document, refer to the following documents and websites:

- NVIDIA DGX-1 servers
- NVIDIA Tesla V100 Tensor Core GPU
- NVIDIA GPU Cloud
- NVIDIA DGX-1 User Guide
- NVIDIA Container Registry User Guide
- Configuring Mellanox adapters for 100Gb Ethernet
- NetApp AFF systems:
− AFF datasheet
− NetApp Flash Advantage for AFF

• ONTAP 9.x documentation
• NetApp FlexGroup technical report
• NetApp AFF A800 installation instructions
  https://library.netapp.com/ecm/ecm_download_file/ECMLP2842669
• NetApp Interoperability Matrix Tool
  http://support.netapp.com/matrix

• Cisco Nexus networking:
  − Cisco Nexus 3232C series switches
  − Cisco Nexus 3232C configuration guide
  − Cisco Nexus 3232C hardware installation guide
  − Cisco Nexus 3232C command-line reference

• Machine learning framework:
    https://www.tensorflow.org/
  − Horovod: Uber’s Open-Source Distributed Deep Learning Framework for TensorFlow
    https://eng.uber.com/horovod/
  − Enabling GPUs in the Container Runtime Ecosystem
    https://devblogs.nvidia.com/gpu-containers-runtime/

• Dataset and benchmarks:
  − ImageNet
    http://www.image-net.org/
  − TensorFlow benchmarks
    https://www.tensorflow.org/performance/benchmarks
  − FIO disk I/O generator

**Version History**

<table>
<thead>
<tr>
<th>Version</th>
<th>Date</th>
<th>Document Version History</th>
</tr>
</thead>
<tbody>
<tr>
<td>Version 1.0</td>
<td>October</td>
<td>Initial release</td>
</tr>
</tbody>
</table>
Refer to the Interoperability Matrix Tool (IMT) on the NetApp Support site to validate that the exact product and feature versions described in this document are supported for your specific environment. The NetApp IMT defines the product components and versions that can be used to construct configurations that are supported by NetApp. Specific results depend on each customer's installation in accordance with published specifications.

Copyright Information

Copyright © 2018 NetApp, Inc. and NVIDIA. All rights reserved. Printed in the U.S. No part of this document covered by copyright may be reproduced in any form or by any means—graphic, electronic, or mechanical, including photocopying, recording, taping, or storage in an electronic retrieval system—without prior written permission of the copyright owner.

Software derived from copyrighted NetApp material is subject to the following license and disclaimer:

THIS SOFTWARE IS PROVIDED BY NETAPP “AS IS” AND WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL NETAPP BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

NetApp reserves the right to change any products described herein at any time, and without notice. NetApp assumes no responsibility or liability arising from the use of products described herein, except as expressly agreed to in writing by NetApp. The use or purchase of this product does not convey a license under any patent rights, trademark rights, or any other intellectual property rights of NetApp.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or pending applications.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.277-7103 (October 1988) and FAR 52-227-19 (June 1987).

Trademark Information

NETAPP, the NETAPP logo, and the marks listed at http://www.netapp.com/TM are trademarks of NetApp, Inc. Other company and product names may be trademarks of their respective owners.