The Clinical Imaging Revolution
From Physics Experiment to Lifesaving Technologies
Clinical imaging has revolutionized healthcare, enabling clinicians to improve patient care, deliver better outcomes and improve the patient experience. But how did we get here...and where is the future headed?
The revolution begins...

1895
Experimenting with a new technology using ionizing radiation, physicist Wilhelm Röntgen imaged the bones—and wedding ring—in his wife’s hand.¹

1896
The clinical potential is realized as radiographs show:

• A glass splinter lodged in the finger of a 4-year-old²
• A Colles fracture in a student at Dartmouth College³

At the same time, numerous reports of radiation-linked injuries begin appearing in the scientific and lay literature.⁴

World War I
Marie Curie drives a truck with portable x-ray equipment into the battlefields of France. X-rays also help doctors:

• Visualize and treat shattered bones
• Record the effects of gas gangrene
• View tuberculosis and other lung lesions
• Perform barium studies of the gastrointestinal tract

¹ Courtesy of the National Library of Medicine
“Atomic cocktails” help visualize the thyroid and other organs.

Implementation of radiation safety procedures like lead aprons and lead gloves.

“X-ray” becomes a commercial advertising catchphrase.

The long-term risks of radiation exposure begin to be quantified.

The use of ultrasound to diagnose gynecological patients begins.

The first fiber-optic semi-flexible endoscope is patented.

The first endoscope is used to examine a patient’s stomach.

Film replaces glass plates for visualizing radiographic images.

Implementation of radiation safety procedures like lead aprons and lead gloves.

The use of ultrasound to diagnose gynecological patients begins.

The first fiber-optic semi-flexible endoscope is patented.
• Commercial CT scanners deliver 64 slices per rotation

18

• Prenatal ultrasounds become routine

19

1970s

• Inventors of computed tomography (CT) imaging receive Nobel Prize

13

• The first positron emission tomography (PET) camera is developed

14

• The first MRI body scan is performed on a human

15

• Professor Heinz Lemke is the first to describe the concept of PACS

16

1980s

Use of electron beam tomography begins

17

1990s

Digital sensors begin replacing film in most clinical settings

20

2000s
CT, MRI and ultrasound enable detailed visualization that almost duplicates an actual organ.
Medical imaging today…
complex, siloed, non-standardized.

Healthcare data will top
2.3 ZB
by 202022

Healthcare data is growing at
48% per year23

More than 70% of healthcare data is imaging data

Why?
Imaging modalities are performed more frequently, with increasing detail, using more advanced technologies.
More imaging standards, practices, guidelines, regulations

- Health Information Privacy and Accountability Act of 1996
- Health Information Technology for Economic and Clinical Health Act 2009
- National Institute of Standards and Technology (NIST)
- Food, Drug, and Cosmetic Act, Section 510(k)
- Mammography Quality Standards Act
- American College of Radiology technical standards and practice guidelines
- Digital Imaging and Communications in Medicine (DICOM) 1993
- Integrating the Healthcare Enterprise (IHE)

Multiple non-standard data formats

- DICOM
- PDF
- JPG
- MPEG
- PNG
Lack of standard imaging workflows

Typical Radiology
- Doctor's Order
- RIS
- PACS
- Image Taken

Typical Other “Ologies”
- Doctor
- Internal Imaging
- Chart/EHR
- Doctor
No signs of slowing...

Global annual patent applications for medical devices **tripled** in 10 years\(^{26}\)

Technology cycle times reduced by **50%** in 5 years\(^{26}\)

Connected devices will number more than **3x** the world’s population by 2021\(^{27}\)

How to make imaging simpler?

“It is essential to enable an ordinary confluence of data towards centralized repositories; such Big data should be enriched with proper clinical annotations and released with full awareness of the patient, who should be placed at the center of the diagnostic workflow.” \(^{28}\)
The technology medical imaging outlook:

What we’re watching on the imaging horizon...

- **AI and ML**: Enabling new treatment paradigms that have the potential to transform the way healthcare is conducted
- **Blockchain**: Giving patients access to and control of their data via secure distributed storage outside healthcare institutions
- **3-D visualization, virtual reality and image-guided intervention**: “Seeing” patients with greater precision for more effective treatments and better clinical outcomes

Read the White Paper
Logicalis helps healthcare organizations improve clinical workflows and better achieve patient-centered goals. NetApp delivers hybrid cloud storage and data management solutions for your enterprise imaging strategy.

Schedule an Imaging Workshop