Rangoli: Space management in deduplication
environments

P. C. Nagesh
NetApp Inc

nageshc@netapp.com

ABSTRACT

Space management is the activity of monitoring and ensur-
ing adequate free space on all volumes in a clustered storage
system. Volumes that exceed used space limits are typically
relieved by migrating a part of their data to other under
utilized volumes. Without deduplication, space reclamation
is simple as one has to just migrate as much data as the de-
sired space reclamation. However, in deduped volumes there
is no direct relation between the logical size of the file and
the physical space occupied by it. Therefore, optimal space
reclamation is hard as: a)migrating few files may produce
little or zero bytes of free space, but still incur significant
network costs. b)migrating a heavily shared file destroys
the disk sharing relationships in that volume and increases
the physical space consumption of that dataset.

In this work, we have designed and built a fast and effi-
cient tool Rangoli, that identifies the optimal set of files for
space reclamation in a deduped environment. It can scale to
millions of files and terabytes of data, running in tens of min-
utes. We show by experimenting on real world datasets, that
alternate strategies such as those based on finding unique
files or using MinHash, impact physical space consumption
by a wide margin (up to 35 times) as compared to Rangoli.

Categories and Subject Descriptors

D.4.3 [Operating Systems|: File Systems Management;
D.4.2 [Operating Systems]: Storage Management

General Terms

space management, capacity balancing

1. INTRODUCTION

Space management is a critical component of storage sys-
tem administration. Alerts (such as E_NO_SPACE) are is-
sued whenever the free space in a volume drops below cer-
tain limits. Often, the only solution is to migrate away a
part of the data from that volume. Simpler options such

Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstract-
ing with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions @acm.org.

SYSTOR ’13, June 30 - July 02 2013, Haifa, Israel

Copyright 2013 ACM 978-1-4503-2116-7/13/06 ...$15.00.

Atish Kathpal
NetApp Inc

atish.kathpal@netapp.com

as adding disks are not always feasible as hard limits exist
on the capacity of a volume for performance reasons. Fur-
ther, this requires manual intervention which may not be
timely. Therefore, many multi-node clustered storage sys-
tems such as CEPH [12] and Panasas [13] incorporate au-
tomated mechanisms that monitor the free space levels in
its constituent volumes and transparently migrate a part of
an over utilized volume to a sparsely populated volume. We
refer to this task of reducing physical space consumption of
a volume as space reclamation. Space reclamation in non
deduped environments is simpler. Here, adding or deleting
a file from a volume leads to guaranteed changes in the used
space of the volume by an amount equal to the logical size
of the file.

Deduplication [10, 9, 2] is a widely adopted storage effi-
ciency technique that introduces disk sharing between the
files in a volume. The effect of file addition or deletion, on
the used space of a deduplicated volume is hard to predict
as it depends on the extent of duplicate data of that file
with the remainder of the volume. A seemingly full volume
might still be able to accommodate a large file. Conversely,
deletion of a large file might free up little or no space. Mi-
grating such a file leads to wasteful network costs without
achieving the desired space reclamation.

Our primary insight is that similar files need to be mi-
grated together. We observed that in a highly deduped vol-
ume, often migrating a file produced minimal free space,
corresponding to its meta data size only and the data block
were not freed as they were being shared with other files.
Also, we noticed that administrators typically preferred to
migrate unique files, as these guaranteed much greater space
reclamation. This is because there are many data blocks
that are only owned by the unique file and therefore readily
freed. This led us to devise a strategy of finding groups of
files that share little or no data with the remainder of the
volume. Such groups in effect act as a large unique file with
reference to the remainder of the volume and form optimal
candidates for space reclamation. Our contributions can be
summarized as:

e A novel solution for space reclamation in deduped en-
vironments that is fast and scalable and tested on real
world datasets.

e A deterministic solution that reports the exact metrics
before the actual migration (i.e we find the exact space
reclamation they produce and the associated penalties,
such as network costs and physical space consump-
tion).

e We find optimal datasets for space reclamation that

are significantly and consistently better than alterna-
tives namely the strategy of migrating unique files and
the strategy based on MinHash [5].

2. BACKGROUND AND RELATED WORK

Our clustered storage incorporates specialized meta data
management (similar to CEPH [12]) that hides the actual lo-
cation of the file from the end user, allowing for transparent
movement of files across volumes. Rangoli identifies optimal
groups of files for space reclamation and reports their exact
metrics to a higher subsystem that decides the final migra-
tion plan. The actual migration can take hours but the selec-
tion of files for migration is expected to complete within tens
of minutes. We leverage the fingerprint database (FPDB)
to compute the extent of disk sharing across files in a vol-
ume. The alternative is to crawl the filesystem metadata
which is very time consuming. FPDB is essentially a map-
ping between data blocks and their cryptographic strength
fingerprints maintained by many deduplication engines [1,
8]. In rare cases, common fingerprints do not imply com-
mon data blocks. This can happen due to hash collision, a
very low probable event that is ignored.

In migrating data, we have the following options with ref-
erence to storage efficiency:

1. Source centric: Select groups of files at source that
have a high degree of disk sharing. Migrate them to-
gether to carry forward the disk sharing opportunities
between them in their new destination.

2. Destination aware: Pick files at the source that poten-
tially have maximum duplicate data at some destina-
tion volume and route it accordingly.

Option(1) is primarily about storage efficiency preservation
and option(2) is an aggressive strategy that seeks to further
increase the global storage efficiency. The following factors
affect the choice between the two strategies. Often a space
starved volume is an indicator of growing data set size and
calls for introduction of newer and empty volumes. Here,
the destination is a fixed empty volume and a source cen-
tric strategy is the only option. When the destination has
to be chosen from older volumes, we need per-volume con-
tent indicators such as bloom filters [14] to choose the best
destination. This could be achieved by computing bloom
filters on the fly, or by periodic maintenance and updation
for every data ingest. The costs of this approach requires
careful consideration against the gains which is subject to
the distribution of data in the cluster.

Space reclamation is a critical but a less frequent prob-
lem where the primary requirement is to quickly relieve an
ailing volume. In this work, we focussed on a source centric
and destination agnostic solution which accomplishes space
reclamation with maximum storage efficiency preservation.

2.1 Related Work

Deduplication is a well researched area [14, 10, 6, 7]
but its impact on space management issues are not well
studied. Storage rebalancing by migrating virtual bins is
a closely related work from Data Domain [4]. They group
super chunks to virtual bins using hashing functions such
as MinimumHash. The super chunks are collections of sim-
ilar stripes of data drawn from backup streams. However,
file striping is not supported in our environment and whole
files are to be migrated. A similar application of hashing
techniques is for similarity searches and document routing

to a set of partitions [3]. Min wise independent permuta-
tions (MinHash) is used over document features to ensures
that similar documents overlap in their set of partitions. In
contrast, we are interested in assigning files to a disjoint set
of partitions in our work. Also, the notion of similarity is
drawn from disk sharing relationships across files and not
the semantic content of the documents. We show in our
evaluation that grouping files using hashing techniques such
as MinimumHash [4] and approximate MinHash [5] does not
work well for space reclamation.

3. SOLUTION OVERVIEW AND DETAILS

3.1 Overview

Our solution is motivated by the observation that migrat-
ing similar files is better for preserving storage efficiency.
If three files F1, F2 and F3 (Figure 1) share a lot of data,
migrating them together is essential to free up the common
blocks held by them. Further, they will continue to share
data in their new destination thus preserving storage effi-
ciency.

Overlap shows disk sharing between files
%

Figure 1: Dividing the dataset into migration bins

Migration bins

Similarity based
o

grouping

We seek to partition the dataset such that most of the
data sharing is between files within the same partition and
files across partitions have little or no data sharing. These
partitions are referred to as migration bins and are the pri-
mary units for space reclamation.The partitioning seeks to
produce migration bins that offer the desired space recla-
mation with least impact on storage efficiency and network
costs. These are measured using the following metrics :

3.1.1 Metric definitions and notations

1. Space Reclamation (SR): SR is the difference in the
total used (physical) space of the source volume before
and after migration.

2. Cost of Migration (CM): CM is the number of blocks
transmitted over the network. This is the number of
unique blocks in the migration bin.

3. Migration Utility (MU): MU is defined as %. Ideally,
we desire high MU as it signifies the amount of accom-
plished objective (SR) for the cost incurred (CM).

4. Physical space bloat (PSB): PSB is the ratio of increase
in the physical space consumption of the dataset to its
original space consumption. When all disk sharing re-
lationships are preserved, no increase in physical space
consumption occurs. Therefore, we seek low values of
PSB.

Note that these metrics are source centric measure-
ments, not accounting for any duplication across the
source and destination volumes.

3.2 Algorithms

Our solution consists of the following three steps:

1. FPDB processing: We process the FPDB to compute
the extent of data sharing across files and then repre-
sent this information as a bipartite graph.

2. Migration binning: Graph partitioning is then per-
formed to obtain K migration bins when the desired
space reclamation is % of the volume space. The par-
titioning is such that each migration bin is approxi-
mately equal in size.

3. Qualification of migration bins: Finally we compute
the metrics for each migration bin and the best amongst
them is then chosen for space reclamation.

We describe these steps in detail in the following sections.

3.2.1 FPDB processing

Algorithm 1 finds the amount of disk sharing between files.
Common blocks between files are given by common finger-
prints in the FPDB and the corresponding block lengths are
summed up to compute the disk sharing. The output is a
bipartite graph with the left side nodes representing the files
(or inodes). The algorithm combines multiple fingerprints or
data blocks with the same set of owner inodes into a single
right side node of the bipartite graph. The weight of the
node denotes the amount of disk sharing.

Input: FPDB file (sorted by fingerprint order)
Output: Bipartite graph
Initialize RightNodeWeights=0, Neighbors = 0,
Nodelist = (3, currentFingerprint = 0,
previousFingerprint = 0
foreach line in FPDB of the form < fingerprint, block
len, inode> do
previousFingerprint := currentFingerprint ;
currentFingerprint := fingerprint ;
if previousFingerprint = currentFingerprint then
‘ Nodelist := Nodelist U inode;
end
else
create a unique identifier for the set of
nodes in Nodelist;
nodeld := hash(nodelist) ;
RightNodeWeights [nodeld] :=
RightNodeWeights [nodeld] + block len ;
Neighbors [nodeld | := nodelist ;
Nodelist := 0 ;
end

end

Algorithm 1: FPDB processing to produce a graphical
representation of the dataset.

3.2.2 Migration binning

The graphical modeling obtained from the previous step,
is a loss less depiction of the exact data sharing extents
across groups of files. Using this graph, we partition the
set of files into disjoint subsets. These subsets are the final
migration bins.

The algorithm starts with every file in its own partition
and progressively merging two or more partitions. Further,
partitions that are chosen for merger are such that there ex-
ists little or no data sharing across them. This is achieved by
traversing the list of data sharing extents (right-side nodes
on the bipartite graph), in the descending order of their

weights. The detailed steps are as follows:
1. Input: Bipartite graph, K - no of bins , Output: K
migration bins
2. Initialize every file to be in its own partition
3. for every node d on the right side of the bipartite graph
in the decreasing order of their weights:
(a) follow the edges and pick the set of neighboring
nodes on the left side of the bipartite graph. This
set is denoted as: N «— {z|Jedge between d and x}
(b) Find P the minimal set of partitions correspond-
ingtoN.i.e P« {p|3m € N and m is in partition p}
(c¢) List the partitions in P in the non-decreasing or-
der of their sizes. If there are two or more par-
titions that are consecutive in the above listing
and whose combined size is <= & of the (logical)
size of the dataset, merge them. Repeat this step
until no more merging is possible.
4. Assign all files in a partition to a single migration
bin. If there are more than K partitions, combine the
smaller ones to get K migration bins.

3.2.3 Qualifying the migration bins

In this final step of our solution, we compute the exact
metrics of the migration bins found in previous step, as de-
scribed below:

1. Input: Bipartite graph, Migration bins (P)

2. Output: Metrics for each migration bin

3. Initialize the following members for each bin p in P:

(a) Logical size(p) = sum total of the logical sizes of
each file belonging to bin p

(b) InternalSharings(p) = 0. This denotes the extent
of data sharing within a bin

(c) SharingAcross(p) = 0 . This denotes the extent
of data sharing of the bin p with the remainder
of the dataset.

4. for each right side node r in the bipartite graph, do :

(a) follow the edges and pick the set of neighboring
nodes on the left side of the bipartite graph. This
set is denoted as : N «— {z|Jedge between r and x}
(b) P is the minimal set of partitions corresponding to
N. i.e P < {p|3m € N and m is in partition p}
(c) for each bin pin P, do :
i. InternalSharings(p)+=(x-1)*weight(r), where
x is the number of nodes in N belonging to
bin p
ii. if the size of set P is > 1 then do SharingAcross(p)
+= weight(r)

5. Output the metrics for each bin p :

(a) CM (p) = Logical size(p) - Internal sharing (p)
(b) SR (p) = CM(p) - SharingAcross (p)
(c) MU (p) = S22
(d)

CM(p)
d) PSB (p) = w where S is the physical
size occupied by the dataset before migration

The algorithm works on the bipartite graph by comput-
ing the amount of disk sharing within and across migration
bins. InternalSharings is the amount of disk sharing within a
migration bin. Upon migration these blocks are completely
freed. As only unique blocks in a bin are transferred, we
can compute CM as the difference in the logical size of the
migration bin and its InternalSharings count. The counter
SharingAcross represents the amount of disk sharing across
migration bins. Upon migration, they are not freed at the
source volume, but produce a copy on the destination vol-

ume. Therefore, SR is the difference in the number of blocks
moved (CM) and those that were not freed (SharingAcross).
Further, this quantity represents the increase in the physical
size occupied by the dataset after migration and is used to
measure PSB. Of the K migration bins obtained, we select
those bins whose space reclaimation is close to the desired
value (i.e within a tolerance of 10%). Amongst these, the bin
with the best metrics (PSB is preferred over MU) is chosen
for the final migration.

3.3 Time and space complexity analysis

The deduplication engine [1] maintains a sorted FPDB
that is accessible in the administrator mode. The FPDB
contains one fingerprint record for every logical block of the
file. The number of fingerprints (f = %) is
proportional to the logical size of the dataset. The total
number of files in the dataset is denoted by n. These form
the left side nodes of the bipartite graph. The total number
of disk blocks is lesser than f owing to deduplication and
represents the physical space occupied by the dataset. Mul-
tiple disk blocks that share the same set of owner files are
jointly represented by a single right side node, that makes
the bipartite graph small enough to fit in memory. The
number of such right side nodes is denoted by m. Edges are
drawn from such right side nodes to connect to the owner
files, represented as the left side nodes of the graph. The
number of such edges is denoted by e.

In FPDB processing we make a single scan over the FPDB
file and its time complexity is linear in f. Its final output is
the bipartite graph with m right side nodes that are listed in
the decreasing order of their weights. This sorting step in-
curs an additional cost of O(mlgm). Its space complexity is
the size of the bipartite graph that it constructs in memory
and is therefore linear in e with an adjacency list representa-
tion. The next steps of migration binning and qualification
of migration bins also have a space complexity of O(e), to
hold the bipartite graph in memory.

In migration binning, we scan through each right side node
and then follow up on the edges to reach the left side nodes.
For each left side node we check which partition it belongs
to. The partition information for the left side nodes are
maintained using a union find datastructure. Therefore we
do a maximum of e “find” operations. The number of par-
titions are initially n and reduce to K with a maximum of
n — K “union” operations. Using the weighted quick union
find with path compression datastructure [11], we arrive at
a time complexity of O((n — K +e€)lg™n). Practically this is
linear in e as e > n and lg*n is practically a constant.

In the next step of qualification of migration bins, we do
a similar scan on the bipartite graph as in migration bin-
ning. However, there are no union-find operations. Every
left side node is uniquely mapped to a migration bin and
we just update the counters associated with each migration
bin. Therefore, the time complexity for this step is O(e).

Further, the first step of FPDB processing can be carried
out on multiple parts of the FPDB independently by parallel
threads and the resultant components of the bipartite graph
can be easily combined. We found that the total running
time reduced further in parallel mode (Section 4) .

4. EVALUATION

In this section we describe the primary evaluation objec-
tives of our solution and compare Rangoli against alternative

Algorithm Time complexity | Space complexity
FPDB Processing O(f + mlgm) O(e)
Migration binning O(e) O(e)
Qualification of migration bins O(e) O(e)

Table 1: Time and space complexity analysis

strategies. We describe the experimental set up and datasets
used to measure these.

4.1 Alternate strategies for comparison

A naive strategy (Naive-du) is to repeatedly pick the file
with highest unique content (given by du in unix) and mi-
grate enough such files to meet the desired space reclama-
tion. The heuristic here is that selecting unique files reduces
effects of disk sharing. The other insight that Rangoli is
based on is that similar files need to be migrated together
(Section 3). Similarity hashing based techniques are well
studied for object placement [4]. Adapting these , we find
file level hashes (hash(f)) and divide the dataset into K log-
ical partitions based on these hashes (file f goes to partition
hash(f)%K). The best partition is picked to be a migration
bin, similar to Rangoli’s strategy. We evaluate against two
types of similarity indicative hashes Minimum Hash [4] and
Min-Hash [5].

4.2 Datasets

We evaluate and compare Rangoli using four real world
datasets that are reflective of common deployments such
as object stores, home directories, virtual desktop images,
etc. The Debian dataset is a set of Debian ISO images,
obtained by downloading weekly releases over a two month
time frame. HomeDir is a set of home directory contents of
several of our colleagues collected over a year. The VMDK
dataset is a collection of virtual machine images used by
our engineers over the past few years. FEngWebBurt is a
mixed dataset consisting of a combination of over a million
engineering documents and bug reports from a live internal
repository. To test the scalability of our algorithms further,
we created two large synthetic datasets by replicating the
files in the EngWebBurt dataset. Datasets Syntheticl and
Synthetic2 were obtained by replicating each file of EngWeb-
Burt twice and thrice respectively. The properties of these
datasets are described in Table 2.

4.3 Experimental Setup

We prototyped Rangoli as an application outside the stor-
age controller. The datasets were hosted on a log structured
storage controller with fixed block size deduplication (4K B)
and the FPDB was exported through an administrator com-
mand.Rangoli and alternate strategies were implemented as
Python applications processing the FPDB on a server class
Linux machine with 2.5Ghz processor and 1GB of RAM.

4.4 Evaluation Objectives

The primary goal of space reclamation is to increase free
space on the source volume by a desired amount. This has
to be achieved with these additional objectives:

1. Flexibility: Any desired space reclamation objective

should be achievable.

2. Impact on space consumption: Since no new data is
added and the same dataset is being spread across mul-
tiple volumes, its physical space consumption should
not increase. We seek low values of PSB (Section 3.1.1)

Dataset Size Dedupe | No. of f FPDB process- | m e Migration | Bin Total time with

files(n) ing with 1 and 4 binning qualifi- | and 4 threads

threads cation

HomeDir 74.7GB 49% 78K 19.5M | 1min 18sec 28K 142K 5.4sec 0.8sec 1min 24sec
Debian 261GB 60% 447 68.4M | 5min 1.3min 24K 116K 0.7sec 0.3sec 5min 1.3min
VMDK 2.4TB 62% 2.4K 644M | 45min | 13min 67K 664K 3.6sec 1.3sec 45min | 13min

EngWebBurt | 1.34TB 51% 4M 359M | 26min | 7min 391K 2.9M 1.5min 30sec 28min | 9min
Syntheticl 2.68TB | 77.5% | 8M 719M | 53min | 14min 3.6M 12.5M | 4min 2min 59min | 20min
Synthetic2 4.02TB 85% 12M 1079M | 77min | 20min 3.6M 18M 5.4min 3min 85min | 28min

Table 2: A detailed view of datasets and their running times (with the following notations: K for thousands,

M for millions, min for minutes and sec for seconds)

to minimize adverse increases in physical space con-
sumption.

. Network costs: Data migration consumes valuable data

center bandwidth. Therefore, we seek high values of
Migration Utility (Section 3.1.1) to ensure that amount
of reclaimed space per unit of data transfer is maxi-
mized.

Scalability: A practical solution should be fast and
require little resources (CPU, memory) to process large
volumes.

Results and Inferences

. Flexibility: We have tested with a wide range of space

reclamation objectives (1% to 50%). Higher values
(> 50%) may be addressed by finding the complement
sets and migrating them. In Figures 2 and 3, the miss-
ing values are due to MinimumHash and MinHashAp-
prox failing to address many space reclamation val-
ues (e.g. 20% and 30% for VMDK). These techniques
produced very skewed clusters for datasets with large
files such as VMDK. A first level partitioning (using
hash(f)%K') does not suffice, and more intelligent pro-
cessing is required to further subdivide these partitions
to the required size. In contrast, Rangoli addresses
all the tested space reclamation values, because the
partitioning logic takes the size of the partitions into
account.

. Impact on space consumption: From Figure 2 we see

that PSB is least for Rangoli consistently. Naive-du
becomes progressively worse for higher space reclama-
tion values. This is because it can easily find small
sets with a few unique files. While forming larger sets
it does not account for the disk sharing relationships
across them and PSB suffers. MinimumHash and Min-
HashApprox also lead to a significant increase in PSB
for some datasets (e.g. see 30% space reclamation for
Debian). These strategies try to produce a single hash
or a statistical summary of the whole object, that tends
to get more inaccurate as the object size increases. In
contrast, PSB is consistently less than 2 for Rangoli
as it explicitly accounts for block level sharings across
files.

Network costs: As shown in Figure 3, Rangoli identifies
migration bins with MU close to 1 and is consistently
better than alternate strategies. This indicates maxi-
mum gain (space reclaimed) for the work done (bytes
transferred). MU varies widely for alternate strategies
as they do not account for the disk sharing relation-
ships between them.

Scalability: The detailed running times of Rangoli for

W Naive-du T MinimumHash B MinHashApprox % Rangoli

35

S}
|

% Physical Space Bloat
B R oo ow
S &G s n

o w

W Naive-du OMinimumHash ® MinHashApprox 7 Rangoli

% Physical Space Bloat

A

Debian HomeDir

~
o

~
o

wn
L

1

o ol

0.0
1% 5% 10% 20% 30%
% Volume Space Reclaimed
EngWebBurt

M Naive-du [MinimumHash ® MinHashApprox %

% Physical Space Bloat
s
o

N
50%

&\
1% 5% 10% 20% 30%
% Volume Space Reclaimed

VMDK

-
~

[N
o

% Physical Space Bloat

adil]

% 20% 30%
% Volume Space Reclaimed

50% 20% 30%

% Volume Space Reclaimed

1%

Figure 2: Increase in physical space consumption
after space reclamation. (Lower is better)

B Naive-du

Migration Utility

VMDK
B Naive-du 0 MinimumHash & MinHashApper) Rangoh'
1

0.95

o
© 99 xn O
S G » & o

Migration Utility
o

0.65
0.6
0.55

Debian HomeDir

W Naive-du (0 MinimumHash ® MinHashApprox 7 Rangoli

50%

MinimumHash B MinHashApprox % Rangoli ® Naive-du 2 MinimumHash ® MinHashApprox 7 Rangoli

N

1% 5% 10% _ 20% 30% 50%
% Volume Space Reclaimed

1% 5% 10% 20% 30%
% Volume Space Reclaimed

EngWebBurt

Migration Utility

N

N

+

1%

1% 59 10% 20% 30% 5% 10% 20% 30%

% Volume Space Reclaimed

50%

Figure 3: Measure of space reclaimed per byte trans-
fer across the network. (Higher is better)

the different stages and the different datasets are re-
ported in Table 2, which further illustrate the scalabil-
ity of the algorithms. In the last columns, we present
the total running times with 4 parallel threads pro-
cessing 4 parts of the FPDB (first step). The migra-

B Naive-du O MinimumHash B MinHashApprox % Rangoli

% Volume Space Reclaimed

tion binning and qualification are fast steps and always
run in a single threaded mode. We infer that Ran-
goli is scalable, as even for large real world datasets
(EngWebBurt, VMDK) it finished in less than 15 min-
utes and took less than 64MB of RAM. With synthetic
datasets that are even larger, the total running times
are still within 30 minutes in parallel mode.

5. CONCLUSION AND FUTURE WORK

In this paper we present a study of challenges with space
reclamation in deduped environments. We have shown the
limitations of common similarity detection techniques and
presented a practical source centric tool for space reclama-
tion. In future, we intend to study destination aware strate-
gies and evaluate the tradeoffs. Presently, Rangoli is imple-
mented as a prototypical tool outside the storage system and
we are now working on incorporating it within the storage
system. This may bring out other system specific challenges.
Also a native implementation in C or C++ may further de-
crease the running times of these algorithms.

6. ACKNOWLEDGMENTS

We would like to thank Gaurav Makkar for his guidance
during the initial stages of this work. We also want to
thank Kaladhar Voruganti, Kiran Srinivasan, Parag Desh-
mukh and our anonymous reviewers for the several insights
and valuable feedback.

7. REFERENCES

[1] C. Alvarez. Netapp deduplication for fas and v-series
deployment and implementation guide. Technical
ReportTR-3505, 2011.

[2] G. Appaji Nag Yasa and P. Nagesh. Space savings and
design considerations in variable length deduplication.
ACM SIGOPS Operating Systems Review,
46(3):57-64, 2012.

[3] D. Bhagwat, K. Eshghi, and P. Mehra. Content-based
document routing and index partitioning for scalable
similarity-based searches in a large corpus. In
Proceedings of the 13th ACM SIGKDD international
conference on Knowledge discovery and data mining,
pages 105-112. ACM, 2007.

[4] W. Dong, F. Douglis, K. Li, H. Patterson, S. Reddy,
and P. Shilane. Tradeoffs in scalable data routing for
deduplication clusters. In Proceedings of the 9th
USENIX conference on File and stroage technologies,
pages 2-2. USENIX Association, 2011.

[5] G. Forman, K. Eshghi, and J. Suermondt. Efficient
detection of large-scale redundancy in enterprise file
systems. ACM SIGOPS Operating Systems Review,
43(1):84-91, 2009.

[6] K. Jin and E. L. Miller. The effectiveness of
deduplication on virtual machine disk images. In
Proceedings of SYSTOR 2009: The Israeli
Ezxperimental Systems Conference, page 7. ACM, 2009.

[7] A. Kathpal, M. John, and G. Makkar. Distributed
duplicate detection in post-process data
de-duplication.

[8] M. Lillibridge, K. Eshghi, D. Bhagwat, V. Deolalikar,
G. Trezise, and P. Camble. Sparse indexing: large
scale, inline deduplication using sampling and locality.

In Proccedings of the 7th conference on File and
storage technologies, pages 111-123, 2009.

[9] N. Mandagere, P. Zhou, M. A. Smith, and
S. Uttamchandani. Demystifying data deduplication.
In Proceedings of the ACM/IFIP/USENIX
Middleware’08 Conference Companion, pages 12-17.
ACM, 2008.

[10] D. T. Meyer and W. J. Bolosky. A study of practical
deduplication. ACM Transactions on Storage (TOS),
7(4):14, 2012.

[11] R. E. Tarjan. Efficiency of a good but not linear set
union algorithm. Journal of the ACM (JACM),
22(2):215-225, 1975.

[12] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. Long,
and C. Maltzahn. Ceph: A scalable, high-performance
distributed file system. In Proceedings of the 7th
symposium on Operating systems design and
implementation, pages 307-320. USENIX Association,
2006.

[13] B. Welch, M. Unangst, Z. Abbasi, G. Gibson,

B. Mueller, J. Small, J. Zelenka, and B. Zhou. Scalable
performance of the panasas parallel file system. In
Proceedings of the 6th USENIX Conference on File
and Storage Technologies, volume 2, pages 1-2, 2008.

[14] B. Zhu, K. Li, and H. Patterson. Avoiding the disk
bottleneck in the data domain deduplication file
system. In Proceedings of the 6th USENIX Conference
on File and Storage Technologies, volume 18, 2008.

©NetApp, the NetApp logo, and Go further, faster are
trademarks or registered trademarks of NetApp, Inc. in the

United States and/or other countries.

