Technical Report

# Performance Characterization of NetApp Cloud Volumes ONTAP for Amazon Web Services

Oded Berman, NetApp May 2020 | TR-4383

#### **Abstract**

This technical report examines the performance of NetApp® Cloud Volumes ONTAP® for Amazon Web Services (AWS) for application workloads. NetApp partners, customers and employees should use the presented information to make informed decisions about which workloads are appropriate for Cloud Volumes ONTAP.



## **TABLE OF CONTENTS**

| 1   | Introduction                                                                      | 4  |
|-----|-----------------------------------------------------------------------------------|----|
| 2   | Executive Summary                                                                 | 4  |
| 3   | Measuring Storage Performance                                                     | 4  |
|     | 3.1 Test Methodology                                                              |    |
|     | 3.2 Cloud Volumes ONTAP Configuration                                             |    |
|     | 3.3 Workloads                                                                     |    |
|     |                                                                                   |    |
|     | 3.4 Test Environment Diagram                                                      |    |
| 4   | Performance Assessment Results                                                    | 8  |
|     | 4.1 Single Node                                                                   | 9  |
|     | 4.2 High Availability                                                             | 16 |
| Ac  | knowledgments                                                                     | 21 |
| Wł  | nere to Find Additional Information                                               | 22 |
| Ve  | rsion History                                                                     | 22 |
|     |                                                                                   |    |
| LIS | ST OF TABLES                                                                      |    |
| Tal | ole 1) Tested EC2 instance types                                                  | 5  |
| Tal | ole 2) Storage configuration                                                      | 6  |
| Tal | ole 3) Random reads results details.                                              | 9  |
| Tal | ole 4) Transactional/OLTP results details.                                        | 11 |
| Tal | ole 5) Sequential reads results details                                           | 12 |
| Tal | ole 6) Streaming writes results details.                                          | 14 |
| Tal | ole 7) Mixed reads/writes results details                                         | 16 |
| Tal | ole 8) Random reads results details                                               | 17 |
| Tal | ole 9) Transactional/OLTP results details - HA                                    | 18 |
| Tal | ole 10) Sequential reads results details – HA                                     | 19 |
|     | ole 11) Streaming writes results details - HA                                     |    |
| Tal | ole 12) Mixed reads/writes results details - HA                                   | 21 |
| LIS | ST OF FIGURES                                                                     |    |
| Fig | ure 1) Test environment diagram                                                   | 8  |
| Fig | ure 2) Random reads workload IOPS and latency                                     | g  |
| Fig | ure 3) Transactional/OLTP workload IOPS and latency – Normal Write.               | 10 |
| Fig | ure 4) Transactional/OLTP workload IOPS and latency – High Write vs. Normal Write | 11 |
| Fig | ure 5) Sequential reads throughput.                                               | 12 |
| Fig | ure 6) Sequential writes throughput – Normal Write.                               | 13 |

2

| Figure 7) Sequential writes throughput – High Write vs. Normal Write                       | 14 |
|--------------------------------------------------------------------------------------------|----|
| Figure 8) Mixed reads/writes workload throughput and latency – Normal Write                | 15 |
| Figure 9) Mixed reads/writes workload throughput and latency – High Write vs. Normal Write | 15 |
| Figure 10) Random reads workload IOPS and latency - HA                                     | 17 |
| Figure 11) Transactional/OLTP workload IOPS and latency - HA.                              | 18 |
| Figure 12) Sequential reads throughput - HA                                                | 19 |
| Figure 13) Sequential writes throughput – HA                                               | 20 |
| Figure 14) Mixed reads/writes workload throughput and latency – HA.                        | 21 |

#### 1 Introduction

NetApp has a long history of providing leading-edge, high-performance, feature-rich data management solutions through its ONTAP family anywhere across the hybrid multicloud, providing the agility and mobility that organizations need in their digital transformation and cloud journey.

The NetApp® Cloud Volumes ONTAP® software-only storage offering is an enterprise-grade storage solution deployed in the public cloud that runs on top of native cloud compute services and manages native cloud block and object storage services. Today, Cloud Volumes ONTAP can be deployed in any of the "big three" cloud providers: Amazon Web Services (AWS), Azure, and Google Cloud. Cloud Volumes ONTAP optimizes cloud storage costs and performance while enhancing data protection, security, and compliance. It delivers a powerful storage solution for any enterprise workload, such as relational and non-relational databases, DevOps, virtual desktop infrastructure (VDI), Kubernetes, file services, disaster recovery, backup and archiving, and more.

Cloud Volumes ONTAP is available in two pricing models: pay as you go (PayGo) and bring your own license (BYOL). For the PayGo model, three types of license packages are available: Explore, Standard, and Premium. Each license package provides different compute and storage capacity options.

This technical report describes the results of performance assessments that were conducted with Cloud Volumes ONTAP for AWS. When deployed in AWS, Cloud Volumes ONTAP uses Amazon Elastic Compute Cloud (EC2), a secure and resizable compute capacity, and Amazon Elastic Block Store (EBS), a high-performance block storage service.

The performance of Cloud Volumes ONTAP is highly dependent on the underlying cloud services being used - the type of EC2 instance, the type and size of EBS volumes, and on the workload. Therefore, several types of workloads, each with different characteristics of I/O operations, were selected to be tested with Cloud Volumes ONTAP using different types of EC2 instances and a non-limiting EBS configuration.

## 2 Executive Summary

NetApp performed this study to showcase the storage performance and benefits of NetApp Cloud Volumes ONTAP in the AWS cloud. Understanding the performance characteristics of Cloud Volumes ONTAP for AWS is critical to set expectations and to help stakeholders make educated decisions about which of their workloads can be handled by Cloud Volumes ONTAP and to understand what the required cloud resources are.

The results are presented in section 4, Performance Assessment Results. The results provide some basic understanding of the Cloud Volumes ONTAP performance capabilities in the AWS cloud and its dependency on the underlying infrastructure and the services that are used.

The chosen workloads for this study were transactional/OLTP, sequential reads, sequential writes, and mixed reads/writes. Each of the selected workloads is characterized by different mixture and access patterns of I/O operations.

# 3 Measuring Storage Performance

NetApp performed these assessments to measure the performance of Cloud Volumes ONTAP 9.7 in single-node and high-availability (HA) configurations with different application workloads. This section describes the methodology that NetApp used to assess Cloud Volumes ONTAP performance and the configuration that was used, as well as the workloads that were tested.

#### 3.1 Test Methodology

For this study, NetApp used Flexible I/O tester (FIO) version 3.16, a tool that can simulate any given workload. FIO generates a number of threads or processes, carrying out the type of I/O combination and patterns that the user specifies to generate the desired workloads. For more information, read the FIO's documentation.

To get the most out of Cloud Volumes ONTAP, multiple FIO clients were used in the various assessments. The I/O workloads were generated by multiple m5.2xlarge EC2 instances (each with eight virtual CPUs [vCPUs] and 32GB of memory) running Red Hat Enterprise Linux 8.

All tests were performed with NFS v4, which is commonly used in a wide variety of workloads. NFS is a distributed file system, based on a client-server architecture, that enables users to access files and directories on a remote file system, much like the process to access local storage. The NFS protocol provides file-level access to logical storage resources such as a NetApp FlexVol® volume, an allocation of storage space that serves as a data container, hosted on Cloud Volumes ONTAP. A FlexVol volume is the basic storage unit that can be mounted by one or more NFS clients, providing access to users within the limits of the granted permissions.

In this study, multiple FlexVol volumes were configured and accessed by the clients. The goal was to achieve the best performance metrics possible for IOPS, throughput (the amount of data payload), and latency (the response time). All the results that are presented later in this report are the aggregated sum from the clients' side.

All the EC2 instances that NetApp used in the study, including the instances that Cloud Volumes ONTAP used, were created in the EU-WEST-1 (Ireland) region, in the same availability zone, Virtual Private Cloud, and subnet.

## 3.2 Cloud Volumes ONTAP Configuration

For this study, Cloud Volumes ONTAP was configured in both single node and high availability (HA) pair as an active-active configuration. Since the performance of Cloud Volumes ONTAP depends greatly on the underlying cloud services that are used (EC2 and EBS), different EC2 types were used and a non-limiting EBS configuration. The EC2 types not only differ in their specifications, but they also incur different costs by AWS and by NetApp and belong to different pricing options (PayGo and BYOL) and PayGo licensing packages. The complete list of supported instances can be found in the <a href="supported-configurations for Cloud Volumes ONTAP 9.7 in AWS">supported in Supported in Supported in Supported in Supported In AWS</a>.

The specific combination of resources determines the overall performance of an EC2 instance. For Cloud Volumes ONTAP, the amount of vCPU effects the general performance, whereas the memory size directly affects the read performance. The EBS bandwidth acts as a throughput throttling factor that is independent of read and write performance levels. All of the supported instance types for Cloud Volumes ONTAP are EBS optimized and have dedicated bandwidth to Amazon EBS, with different maximal throughput, depending on the instance type. For additional information on the instance types, visit the Amazon instance types page and Amazon EBS-optimized instances in the EC2 user guide.

#### **EC2 Instances**

The following table (Table 1) displays the EC2 instance types used by Cloud Volumes ONTAP that were tested:

Table 1) Tested EC2 instance types.

| Model                     | vCPU |                    |       | - 10.10.9 |                  | EBS Bandwidth |
|---------------------------|------|--------------------|-------|-----------|------------------|---------------|
|                           | EC2  | ONTAP <sup>3</sup> | (GiB) | (GiB)     | Bandwidth (Gbps) | (Mbps)        |
| c5n.18xlarge <sup>4</sup> | 72   | 48                 | 192   | EBS-only  | 100              | 19,000        |

| Model                        | vCPU | Memory             | Storage Type | Network             | EBS Bandwidth    |        |
|------------------------------|------|--------------------|--------------|---------------------|------------------|--------|
|                              | EC2  | ONTAP <sup>3</sup> | (GiB)        | (GiB)               | Bandwidth (Gbps) | (Mbps) |
| c5n.9xlarge                  | 36   | 36                 | 96           | EBS-only            | 50               | 9,500  |
| c5.9xlarge                   | 36   | 36                 | 72           | EBS-only            | 10               | 9,500  |
| c5d.18xlarge <sup>2</sup>    | 72   | 48                 | 144          | 2 x 900 NVMe<br>SSD | 25               | 19,000 |
| c5d.9xlarge <sup>2</sup>     | 36   | 36                 | 72           | 1 x 900 NVMe<br>SSD | 10               | 9,500  |
| r5dn.12xlarge <sup>2,4</sup> | 48   | 48                 | 384          | 2 x 900 NVMe<br>SSD | 10               | 9,500  |
| r5.12xlarge                  | 48   | 48                 | 384          | EBS-only            | 10               | 9,500  |
| r5.8xlarge                   | 32   | 24                 | 256          | EBS-only            | 10               | 6,800  |
| r5.2xlarge <sup>1</sup>      | 8    | 8                  | 64           | EBS-only            | 10               | 4,750  |
| m5.16xlarge                  | 64   | 48                 | 256          | EBS-only            | 20               | 13,600 |
| m5d.12xlarge <sup>2</sup>    | 48   | 48                 | 192          | 2 x 900 NVMe<br>SSD | 10               | 9,500  |
| m5d.8xlarge <sup>2</sup>     | 32   | 24                 | 128          | 2 x 600 NVMe<br>SSD | 10               | 6,800  |
| m5.4xlarge                   | 16   | 16                 | 64           | EBS-only            | 10               | 4,750  |
| m5.2xlarge 1                 | 8    | 8                  | 32           | EBS-only            | 10               | 4,750  |

#### Note:

## **Storage Configuration**

All Cloud Volumes ONTAP nodes were configured with multiple EBS General Purpose SSD (gp2) volumes as shown in the following table (Table 2) – For more information, see diagram in section 3.4, Test Environment Diagram.

Table 2) Storage configuration.

| Resources                         | Single Node                 | High Availability Node |
|-----------------------------------|-----------------------------|------------------------|
| # of GP2 EBS volumes              | 12 (each 6TB in size)       | 6 (each 6TB in size)   |
| # of aggregates                   | 2 (each with 6 EBS volumes) | 1 (with 6 EBS volumes) |
| # of FlexVol volumes in aggregate | 2                           | 2                      |

<sup>1.</sup> These instance types can support maximum performance for 30 minutes at least once every 24 hours. If you have a workload that requires sustained maximum performance for longer than 30 minutes, select a different instance type.

<sup>2.</sup> These instance types, in addition to EBS, include local NVMe storage, which Cloud Volumes ONTAP uses as NetApp Flash Cache. NetApp Flash Cache speeds access to data through real-time intelligent caching. It is effective for random read-intensive workloads, including databases, email, and file services.

<sup>3.</sup> Currently, Cloud Manager deploys Cloud Volumes ONTAP with 16 vCPUs as a maximum limit, however additional vCPUs are supported. Changing the number of vCPUs currently requires a manual procedure.

<sup>4.</sup> Instances are not officially supported yet.

Using General Purpose SSD is the recommended best practice because it balances price performance for a wide variety of workloads and transactional data. Cloud Volumes ONTAP supports other types of EBS volumes, such as EBS Provisioned IOPS SSD (io1), Throughput Optimized HDD (st1) and Cold HDD (sc1). For additional information about Amazon EBS, visit Amazon EBS volume types.

## **Write Speed**

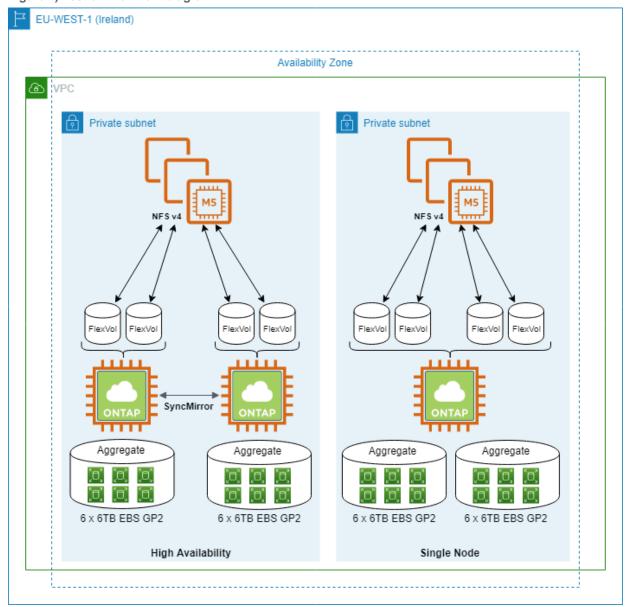
Cloud Volumes ONTAP's <u>Write Speed</u> option, dramatically affects write performance and can be set to either **Normal** (default) or **High**.

When the write speed is set to Normal, data is first written to persistent storage and then an acknowledgment is sent back to the client. This process eliminates the chance of data loss if an unplanned outage occurs.

When the write speed is set to <code>High</code>, data is buffered in memory and an acknowledgment is sent back to the client before the data is committed to persistent storage. High write speed enhances write performance but also increases the potential for data loss if an unplanned outage occurs. Users should enable a high write speed only if enhanced write performance is required and if data loss can either be tolerated or be handled by the application. For example, data loss from an unplanned outage can be tolerated, or the application (such as Microsoft SQL Server for Always On availability groups or <code>MySQL</code> replication) can handle data loss.

All instances were tested with Write Speed set to Normal. To demonstrate the Write Speed effect on write performance, two single node Cloud Volumes ONTAP instances were tested with the option set to High. In section 4 Performance Assessment Results, the values for both instances, in both Normal and High write speeds are presented in the applicable workloads.

#### 3.3 Workloads


In this study, five different workloads were configured and tested. Each tested workload consisted of a unique I/O mixture and access pattern that simulated workloads that are used in widely deployed applications:

- Random reads (4K block size 100% reads, and 100% random access I/O). A random read is a disk access pattern whereby small (4K) blocks of data are read from random locations. This workload is used primarily within the context of benchmarking how effective a device is at quickly retrieving small pieces of data from random locations.
- Transactional/OLTP (8KB block size, 80% reads, and 100% random access I/O). A transactional
  workload is typically identified by a database that receives numerous requests for data and multiple
  changes to this data from several users over time. These modifications are called transactions. The
  transactions are small and primarily random in nature with high concurrency. This type of workload is
  generated by transactional database applications such as SAP, Oracle, and SQL Server and MySQL
  databases.
- Sequential reads (64KB block size, 100% reads, and 100% sequential access I/O). In a streaming reads workload, only sequential read operations are performed (and they are concurrent, large, contiguous requests). This workload is typically generated by applications such as media servers (for example, video on demand) and virtual tape libraries.
- **Sequential writes** (64KB block size, 100% writes, and 100% sequential access I/O). In a streaming writes workload, only sequential write operations are performed (and they are concurrent, large, contiguous requests). This workload is typically generated by applications such as media capture, virtual tape libraries, medical imaging, backup and archiving, and video surveillance.
- Mixed reads/writes (16KB block size, 50% reads, and 100% random access I/O). Many applications generate a mix of read/write operations that differ in the reads versus writes percentage, block size, and random versus sequential percentage and that typically require high throughput and low latency. A mix of 50% reads and 50% writes is a common starting point for measuring. That kind of workload can be found, for example, in a VDI.

## 3.4 Test Environment Diagram

Figure 1 displays the environment and AWS resources that NetApp used for the performance assessments.

Figure 1) Test environment diagram.



## 4 Performance Assessment Results

This section describes the values of the performance metrics that were obtained in the process of assessing NetApp Cloud Volumes ONTAP for AWS for a single-node and HA pair as an active-active configuration deployed in a single availability zone.

## 4.1 Single Node

The following figures and tables describe the performance metrics of Cloud Volumes ONTAP for AWS in a single node configuration in applicable workloads.

#### Random Reads

The significant metrics for this type of workload are IOPS and latency, as shown in the following figure and table (Figure 2 and Table 3).

Figure 2) Random reads workload IOPS and latency.

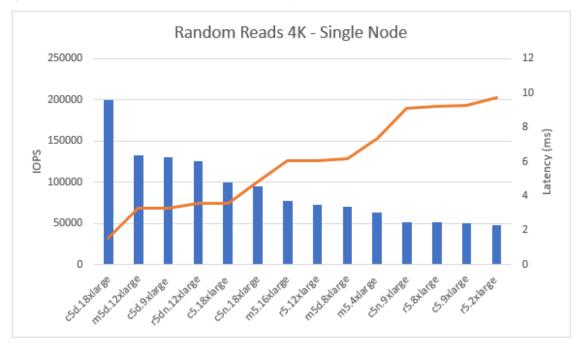
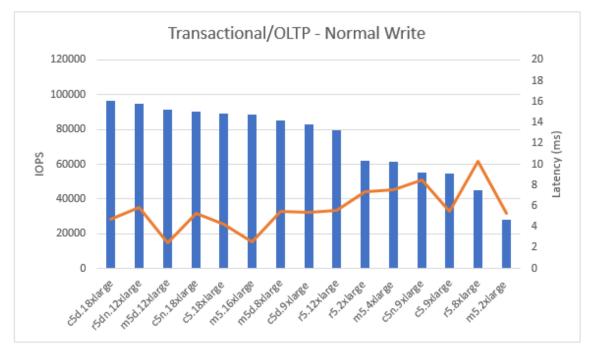



Table 3) Random reads results details.


| Model         | IOPS   | Throughput (MBps) | Latency (ms) |
|---------------|--------|-------------------|--------------|
| m5.2xlarge    | N/A    | N/A               | N/A          |
| c5d.18xlarge  | 200263 | 801               | 1.52         |
| m5d.12xlarge  | 132312 | 529               | 3.29         |
| c5d.9xlarge   | 130848 | 523               | 3.3          |
| r5dn.12xlarge | 125855 | 503               | 3.55         |
| c5.18xlarge   | 99280  | 397               | 3.56         |
| c5n.18xlarge  | 95282  | 381               | 4.84         |
| m5.16xlarge   | 76933  | 308               | 6.03         |
| r5.12xlarge   | 72920  | 292               | 6.08         |
| m5d.8xlarge   | 70663  | 283               | 6.19         |
| m5.4xlarge    | 63331  | 253               | 7.35         |

| Model       | IOPS  | Throughput (MBps) | Latency (ms) |
|-------------|-------|-------------------|--------------|
| c5n.9xlarge | 51753 | 207               | 9.09         |
| r5.8xlarge  | 50819 | 203               | 9.22         |
| c5.9xlarge  | 50537 | 202               | 9.29         |

#### Transactional/OLTP

The significant metrics for this type of workload are IOPS and latency, as shown in the following figures and tables (Figure 3 and Figure 4 and Table 4).

Figure 3) Transactional/OLTP workload IOPS and latency – Normal Write.



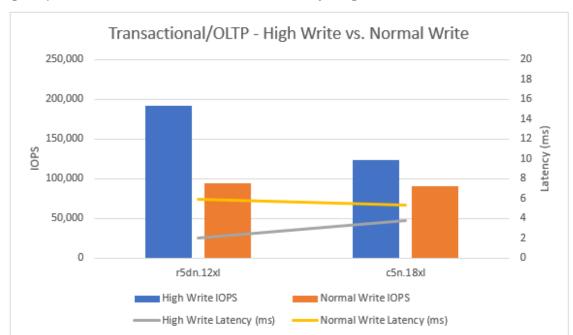



Figure 4) Transactional/OLTP workload IOPS and latency – High Write vs. Normal Write.

Table 4) Transactional/OLTP results details.

| Model                      | IOPS           | Throughput (MBps) | Latency (ms) |
|----------------------------|----------------|-------------------|--------------|
| c5d.18xlarge               | 96236          | 770               | 4.7          |
| r5dn.12xlarge <sup>1</sup> | 94729 (192188) | 758 (1537)        | 5.9 (2)      |
| m5d.12xlarge               | 91566          | 733               | 2.5          |
| c5n.18xlarge <sup>1</sup>  | 90002 (123134) | 720 (985)         | 5.3 (3.8)    |
| c5.18xlarge                | 88948          | 712               | 4.29         |
| m5.16xlarge                | 88388          | 707               | 2.6          |
| m5d.8xlarge                | 85164          | 681               | 5.5          |
| c5d.9xlarge                | 82776          | 662               | 5.41         |
| r5.12xlarge                | 79544          | 636               | 5.6          |
| r5.2xlarge                 | 61799          | 494               | 7.39         |
| m5.4xlarge                 | 61235          | 490               | 7.53         |
| c5n.9xlarge                | 55253          | 442               | 8.49         |
| c5.9xlarge                 | 54899          | 439               | 5.45         |
| r5.8xlarge                 | 44995          | 360               | 10.33        |

<sup>1.</sup> High write speed values in parenthesis.

## **Sequential Reads**

The significant metric for this type of workload is throughput, as shown in the following figure and table (Figure 5 and Table 5).

Figure 5) Sequential reads throughput.

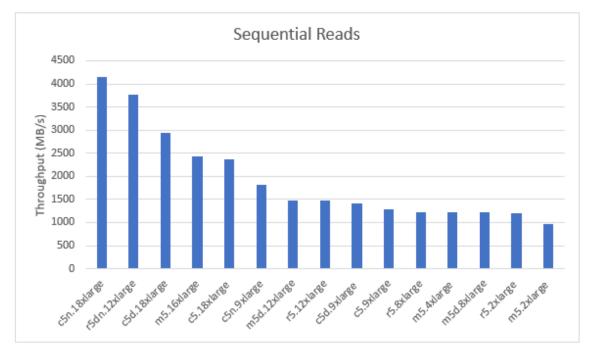
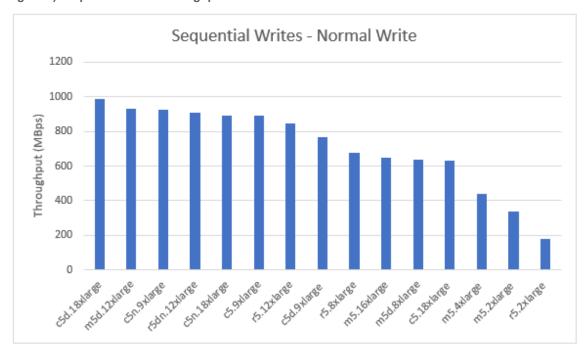



Table 5) Sequential reads results details.


| Model         | IOPS  | Throughput (MBps) | Latency (ms) |
|---------------|-------|-------------------|--------------|
| c5n.18xlarge  | 64949 | 4157              | 5            |
| r5dn.12xlarge | 58799 | 3763              | 6.9          |
| c5d.18xlarge  | 45857 | 2935              | 6            |
| m5.16xlarge   | 38139 | 2441              | 2            |
| c5.18xlarge   | 36949 | 2365              | 7.3          |
| c5n.9xlarge   | 28451 | 1821              | 16.1         |
| m5d.12xlarge  | 22961 | 1470              | 0.46         |
| r5.12xlarge   | 22941 | 1468              | 0.88         |
| c5d.9xlarge   | 22082 | 1413              | 2.69         |
| c5.9xlarge    | 19954 | 1277              | 11.2         |
| r5.8xlarge    | 19104 | 1223              | 2            |
| m5.4xlarge    | 19026 | 1218              | 4.19         |
| m5d.8xlarge   | 19023 | 1217              | 2.07         |

| Model      | IOPS  | Throughput (MBps) | Latency (ms) |
|------------|-------|-------------------|--------------|
| r5.2xlarge | 18866 | 1207              | 1.36         |
| m5.2xlarge | 15214 | 974               | 0.6          |

## **Sequential Writes**

The significant metric for this type of workload is throughput, as shown in the following figures and table (Figure 6 and Figure 7 and Table 6).

Figure 6) Sequential writes throughput - Normal Write.



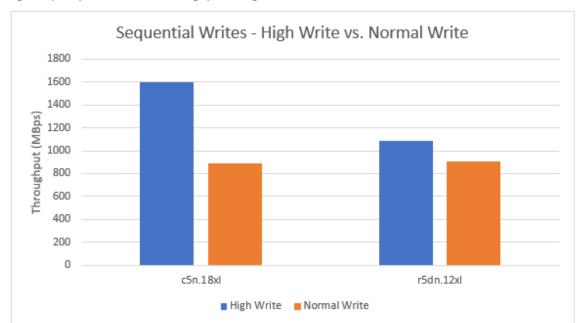



Figure 7) Sequential writes throughput – High Write vs. Normal Write.

Table 6) Streaming writes results details.

| Model                      | IOPS          | Throughput (MBps) | Latency (ms) |
|----------------------------|---------------|-------------------|--------------|
| c5d.18xlarge               | 15465         | 990               | 32           |
| m5d.12xlarge               | 14530         | 930               | 32           |
| c5n.9xlarge                | 14496         | 928               | 33           |
| r5dn.12xlarge <sup>1</sup> | 14183 (16989) | 908 (1087)        | 47 (11)      |
| c5n.18xlarge <sup>1</sup>  | 13948 (24951) | 893 (1597)        | 35 (8)       |
| c5.9xlarge                 | 13911         | 890               | 34           |
| r5.12xlarge                | 13198         | 845               | 36           |
| c5d.9xlarge                | 12013         | 769               | 9.23         |
| r5.8xlarge                 | 10557         | 676               | 40.53        |
| m5.16xlarge                | 10138         | 649               | 46.29        |
| m5d.8xlarge                | 9987          | 639               | 43.06        |
| c5.18xlarge                | 9882          | 632               | 8.83         |
| m5.4xlarge                 | 6843          | 438               | 37.42        |
| m5.2xlarge                 | 5264          | 337               | 14.5         |
| r5.2xlarge                 | 2745          | 176               | 44.53        |

High write speed values in parenthesis.

#### Mixed Reads/Writes

The significant metrics for this type of workload are throughput and latency, as shown in the following figures and table (Figure 8 and Figure 9 and Table 7).



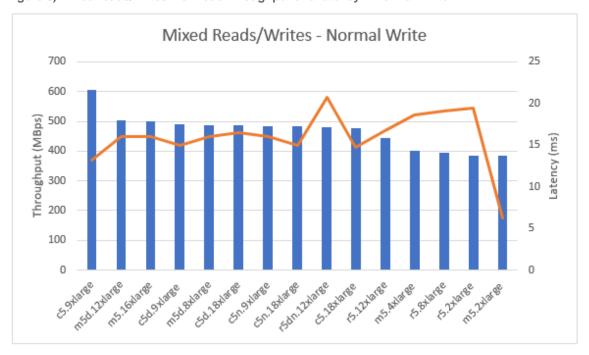



Figure 9) Mixed reads/writes workload throughput and latency - High Write vs. Normal Write.

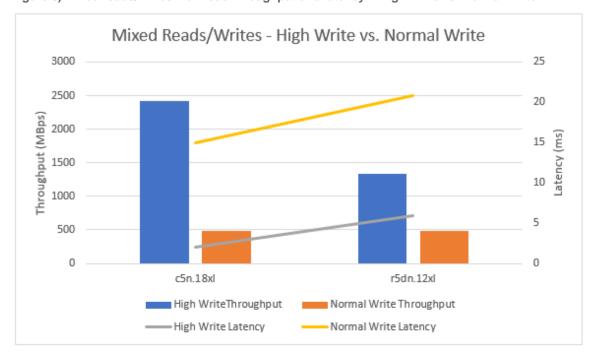



Table 7) Mixed reads/writes results details.

| Model                      | IOPS           | Throughput (MBps) | Latency (ms) |
|----------------------------|----------------|-------------------|--------------|
| c5.9xlarge                 | 37788          | 605               | 13.2         |
| m5d.12xlarge               | 31403          | 502               | 16           |
| m5.16xlarge                | 31274          | 500               | 16           |
| c5d.9xlarge                | 30618          | 490               | 14.98        |
| m5d.8xlarge                | 30449          | 487               | 16           |
| c5d.18xlarge               | 30371          | 486               | 16.5         |
| c5n.9xlarge                | 30295          | 485               | 16           |
| c5n.18xlarge <sup>1</sup>  | 30265 (151271) | 484 (2420)        | 15 (2)       |
| r5dn.12xlarge <sup>1</sup> | 30085 (83415)  | 481 (1334)        | 20.8 (5.9)   |
| c5.18xlarge                | 29812          | 477               | 14.72        |
| r5.12xlarge                | 27714          | 443               | 16.72        |
| m5.4xlarge                 | 25103          | 402               | 18.65        |
| r5.8xlarge                 | 24556          | 393               | 19.09        |
| r5.2xlarge                 | 24059          | 385               | 19.45        |
| m5.2xlarge                 | 23991          | 384               | 6.2          |

<sup>1.</sup> High write speed values in parenthesis.

## 4.2 High Availability

The following figures and tables describe the performance metrics of Cloud Volumes ONTAP for AWS in a high availability (HA) pair as an active-active configuration deployed in a single availability zone. Results displayed are the sum of both nodes in the HA pair.

#### **Random Reads**

The significant metrics for this type of workload are IOPS and latency, as shown in the following figure and table (Figure 10 and Table 8).

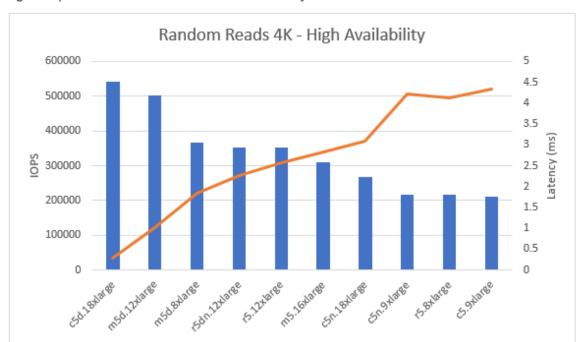



Figure 10) Random reads workload IOPS and latency - HA.

Table 8) Random reads results details.

| Model         | IOPS   | Throughput (MBps) | Latency (ms) |
|---------------|--------|-------------------|--------------|
| c5d.18xlarge  | 542012 | 2168              | 0.29         |
| m5d.12xlarge  | 502212 | 2009              | 1.02         |
| m5d.8xlarge   | 367894 | 1472              | 1.85         |
| r5dn.12xlarge | 353734 | 1415              | 2.26         |
| r5.12xlarge   | 352144 | 1409              | 2.57         |
| m5.16xlarge   | 309754 | 1239              | 2.83         |
| c5n.18xlarge  | 267360 | 1069              | 3.1          |
| c5n.9xlarge   | 217368 | 869               | 4.21         |
| r5.8xlarge    | 216202 | 865               | 4.12         |
| c5.9xlarge    | 210914 | 844               | 4.33         |

#### 4.2.2 Transactional/OLTP

The significant metrics for this type of workload are IOPS and latency, as shown in the following figure and table (Figure 11 and Table 9).



Figure 11) Transactional/OLTP workload IOPS and latency - HA.

Table 9) Transactional/OLTP results details - HA.

| Model         | IOPS   | Throughput (MBps) | Latency (ms) |
|---------------|--------|-------------------|--------------|
| c5.9xlarge    | 166352 | 1331              | 5.25         |
| r5.12xlarge   | 162506 | 1300              | 5.37         |
| m5d.12xlarge  | 157636 | 1261              | 5.54         |
| c5d.18xlarge  | 157466 | 1260              | 5.25         |
| c5n.9xlarge   | 154934 | 1239              | 5.85         |
| m5.16xlarge   | 152418 | 1219              | 5.78         |
| c5n.18xlarge  | 148458 | 1188              | 5.68         |
| m5d.8xlarge   | 146626 | 1173              | 5.72         |
| r5dn.12xlarge | 141016 | 1128              | 6.39         |
| r5.8xlarge    | 130118 | 1041              | 6.86         |

## **Sequential Reads**

The significant metric for this type of workload is throughput, as shown in the following figure and table (Figure 12 and Table 10).

Sequential Reads - High Availability 10000 9000 8000 Throughput (MB/s) 7000 6000 5000 4000 3000 2000 1000 Edizha Evizha E 9 Marke E SHAIRE afte 5.12Marge myd.12Marge

Figure 12) Sequential reads throughput - HA.

Table 10) Sequential reads results details - HA.

| Model         | IOPS Throughput (MBps) |      | Latency (ms) |
|---------------|------------------------|------|--------------|
| c5n.9xlarge   | 140198                 | 8973 | 2.81         |
| r5dn.12xlarge | 133472                 | 8542 | 4.68         |
| c5n.18xlarge  | 120786                 | 7730 | 3.9          |
| c5d.18xlarge  | 92392                  | 5913 | 2.74         |
| m5.16xlarge   | 76334                  | 4885 | 2.04         |
| r5.12xlarge   | 45828                  | 2933 | 0.11         |
| m5d.12xlarge  | 45726                  | 2926 | 0.41         |
| c5.9xlarge    | 44526                  | 2850 | 0.73         |
| r5.8xlarge    | 39594                  | 2534 | 0.18         |
| m5d.8xlarge   | 38272                  | 2449 | 0.71         |

## **Sequential Writes**

The significant metric for this type of workload is throughput, as shown in the following figure and table (Figure 13 and Table 11).

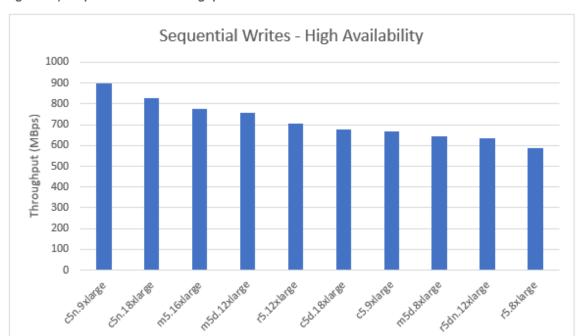



Figure 13) Sequential writes throughput – HA.

Table 11) Streaming writes results details - HA.

| Model         | IOPS  | Throughput (MBps) | Latency (ms) |
|---------------|-------|-------------------|--------------|
| c5n.9xlarge   | 14010 | 897               | 37.64        |
| c5n.18xlarge  | 12904 | 826               | 41.3         |
| m5.16xlarge   | 12140 | 777               | 44.56        |
| m5d.12xlarge  | 11792 | 755               | 72.17        |
| r5.12xlarge   | 11010 | 705               | 47.39        |
| c5d.18xlarge  | 10556 | 676               | 53.84        |
| c5.9xlarge    | 10402 | 666               | 49.92        |
| m5d.8xlarge   | 10050 | 643               | 50.36        |
| r5dn.12xlarge | 9922  | 635               | 53.84        |
| r5.8xlarge    | 9146  | 585               | 91.58        |

## **Mixed Reads/Writes**

The significant metrics for this type of workload are throughput and latency, as shown in the following figure and table (Figure 14 and Table 12).



Figure 14) Mixed reads/writes workload throughput and latency – HA.

Table 12) Mixed reads/writes results details - HA.

| Model         | IOPS Throughput (MBps) |     | Latency (ms) |
|---------------|------------------------|-----|--------------|
| c5.9xlarge    | 54320                  | 869 | 16.56        |
| r5.12xlarge   | 53134                  | 850 | 17.46        |
| m5d.12xlarge  | 51146                  | 818 | 17.99        |
| c5n.18xlarge  | 49790                  | 797 | 17.72        |
| c5n.9xlarge   | 48120                  | 770 | 19.53        |
| m5d.8xlarge   | 47890                  | 766 | 19.24        |
| m5.16xlarge   | 47294                  | 757 | 19.4         |
| c5d.18xlarge  | 45450                  | 727 | 16.79        |
| r5dn.12xlarge | 42122                  | 674 | 19.15        |
| r5.8xlarge    | 41418                  | 663 | 22.37        |

# **Acknowledgments**

The author gratefully acknowledges the contributions that were made to this technical report by key NetApp team members: Ofir Dagan, Ishai Avramovich, Oryan Rachum, Aviv Degani, Michele Pardini, and Yuval Kalderon. My sincere appreciation and thanks go to all these individuals, who designed and performed the assessments and provided the insight and expertise that greatly assisted in the creation of this paper.

#### Where to Find Additional Information

To learn more about the information that is described in this document, review the following documents or websites:

- Cloud Volumes ONTAP (features, architecture, TCO calculator, pricing, and more) https://cloud.netapp.com/ontap-cloud
- NetApp Cloud Manager and Cloud Volumes ONTAP documentation https://docs.netapp.com/us-en/occm/
- Getting Started with Cloud Volumes ONTAP for AWS <a href="https://docs.netapp.com/us-en/occm/task\_getting\_started\_aws.html">https://docs.netapp.com/us-en/occm/task\_getting\_started\_aws.html</a>
- Enabling Flash Cache on Cloud Volumes ONTAP in AWS https://docs.netapp.com/us-en/occm/task\_enabling\_flash\_cache.html#whats-flash-cache
- Planning your Cloud Volumes ONTAP write speed <a href="https://docs.netapp.com/us-en/occm/task\_planning\_your\_config.html#choosing-a-write-speed">https://docs.netapp.com/us-en/occm/task\_planning\_your\_config.html#choosing-a-write-speed</a>
- Latest FIO documentation https://fio.readthedocs.io/en/latest/
- Amazon EBS features
   https://aws.amazon.com/ebs/features/
- Amazon EC2 Instance Types https://aws.amazon.com/ec2/instance-types/
- Cloud Manager Deploy and Manage NetApp Cloud Data Services in AWS Marketplace https://aws.amazon.com/marketplace/pp/B07QX2QLXX

## **Version History**

| Version     | Date          | Document Version History                                                                          |
|-------------|---------------|---------------------------------------------------------------------------------------------------|
| Version 3   | April 2020    | Revision of performance with Cloud Volumes ONTAP 9.7 for AWS                                      |
| Version 2.3 | Jan 2019      | Updated performance with Cloud Volumes ONTAP 9.5                                                  |
| Version 2.2 | July 2018     | Updated performance with Cloud Volumes ONTAP 9.4 Updated instance types Added Tiering performance |
| Version 2.1 | February 2018 | Updated performance with Cloud Volumes ONTAP 9.3                                                  |
| Version 2.0 | June 2017     | Updated performance with Cloud Volumes ONTAP 9.2 Added performance of high availability           |
| Version 1.2 | May 2017      | Additional tests                                                                                  |
| Version 1.1 | January 2016  | Updated with tests of additional instance types                                                   |
| Version 1.0 | February 2015 | Initial release                                                                                   |

Refer to the Interoperability Matrix Tool (IMT) on the NetApp Support site to validate that the exact product and feature versions described in this document are supported for your specific environment. The NetApp IMT defines the product components and versions that can be used to construct configurations that are supported by NetApp. Specific results depend on each customer's installation in accordance with published specifications.

#### **Copyright Information**

Copyright © 2020 NetApp, Inc. All Rights Reserved. Printed in the U.S. No part of this document covered by copyright may be reproduced in any form or by any means—graphic, electronic, or mechanical, including photocopying, recording, taping, or storage in an electronic retrieval system—without prior written permission of the copyright owner.

Software derived from copyrighted NetApp material is subject to the following license and disclaimer:

THIS SOFTWARE IS PROVIDED BY NETAPP "AS IS" AND WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL NETAPP BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

NetApp reserves the right to change any products described herein at any time, and without notice. NetApp assumes no responsibility or liability arising from the use of products described herein, except as expressly agreed to in writing by NetApp. The use or purchase of this product does not convey a license under any patent rights, trademark rights, or any other intellectual property rights of NetApp.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or pending applications.

Data contained herein pertains to a commercial item (as defined in FAR 2.101) and is proprietary to NetApp, Inc. The U.S. Government has a non-exclusive, non-transferrable, non-sublicensable, worldwide, limited irrevocable license to use the Data only in connection with and in support of the U.S. Government contract under which the Data was delivered. Except as provided herein, the Data may not be used, disclosed, reproduced, modified, performed, or displayed without the prior written approval of NetApp, Inc. United States Government license rights for the Department of Defense are limited to those rights identified in DFARS clause 252.227-7015(b).

#### **Trademark Information**

NETAPP, the NETAPP logo, and the marks listed at <a href="http://www.netapp.com/TM">http://www.netapp.com/TM</a> are trademarks of NetApp, Inc. Other company and product names may be trademarks of their respective owners.

TR-4383-0520

